A High-Resolution Polarization Survey of the North Polar Spur

1974 ◽  
pp. 151-154
Author(s):  
G. Westerhout ◽  
D. Bechis
Icarus ◽  
2013 ◽  
Vol 226 (2) ◽  
pp. 1241-1251 ◽  
Author(s):  
S. Christian ◽  
J.W. Holt ◽  
S. Byrne ◽  
K.E. Fishbaugh

2016 ◽  
Vol 121 (8) ◽  
pp. 1445-1471 ◽  
Author(s):  
Patricio Becerra ◽  
Shane Byrne ◽  
Michael M. Sori ◽  
Sarah Sutton ◽  
Kenneth E. Herkenhoff

2020 ◽  
Author(s):  
Alfiah Rizky Diana Putri ◽  
Yu Tao ◽  
Jan-Peter Muller

<p>The NASA Mars Orbital Laser Altimeter (MOLA) Digital Terrain Model (DTM) has the greatest coverage available for Mars with an average resolution of 463 m/pixel (128pixel/ degree) globally and 112 m/ pixel (512 pixels/degree) for the polar regions [1]. The ESA Mars Express High-Resolution Stereo Camera (HRSC) is currently orbiting Mars and continuously mapping the surface, 98% with resolutions finer than 100 m/pixel, and 100% at lower resolutions [2]. Previously, 50m/pixel DTMs were produced using a NASA-VICAR-based pipeline developed by the German Aerospace Centre, with modifications from Kim and Muller [3] for the south polar region, using an image matcher based on the Gruen-Otto-Chau (Gotcha) algorithm [4].</p><p> </p><p>In this research, we demonstrate application of the same method to the North Polar [5] region. Forty single strip DTMs have been processed and corrected to produce a north polar HRSC DTM mosaic at 50m/pixel. The assessment of the dataset to MOLA will be discussed. Moreover, a large number (~50) of the North polar HRSC images are co-registered and orthorectified using the DTM mosaic. We also demonstrate observations of the seasonal ice cap growth and retreat using the orthorectified images for Martian Year (MY) 27-32. In addition, the results for MY28-31 are compared against the observations from the Mars Colour Imager (MARCI)[6].</p><p> <br>ACKNOWLEDGEMENT: Part of the research leading to these results has received partial funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n ̊ 607379; The first author is supported by the Indonesian Endowment Fund for Education. We would also like to express gratitude to the HRSC team and the MOLA team for the usage of HRSC and MOLA data, and Alexander Dumke for the exterior orientation processing results used within this research.<br><br>[1] Smith, David, et al. 2001. “Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars.” Journal of Geophysical Research: Planets 106(E10):23689–23722<br><br>[2] Gwinner, et al. 2016. “The High Resolution Stereo Camera (HRSC) of Mars Express and Its Approach to Science Analysis and Mapping for Mars and Its Satellites.” Planetary and Space Science 126:93–138<br><br>[3] Kim and J-P. Muller, 2009. “Multi-resolution topographic data extraction from Martian stereo imagery.” Planetary and Space Science, 57(14-15):2095-2112.<br><br>[4] D. Shin and J-P. Muller, 2012. “Progressively weighted adaptive correlation matching for quasi-dense 3d reconstruction.” Pattern Recognition, 45(10):3795-3809.<br><br>[5] Putri, A.R.D., et al., 2019. “A New South Polar Digital Terrain Model of Mars from the High-Resolution Stereo Camera (HRSC) onboard the ESA Mars Express.” Planetary and Space Science.<br><br>[6] Calvin, W.M., et al., 2015. “Interannual and seasonal changes in the north polar ice deposits of Mars: Observations from MY 29–31 using MARCI.” Icarus, 251, pp.181-190.</p><p> </p>


1974 ◽  
Vol 60 ◽  
pp. 151-154
Author(s):  
G. Westerhout ◽  
D. Bechis

Observations have been made at 21 cm with a resolution of 11′ to look for fine structure in the polarization distribution. In the North Polar Spur, the angular scale of the polarization parameters varies with latitude. This is attributed to an increase in the irregularity of the magnetic field in the Spur with latitude.


1990 ◽  
Vol 140 ◽  
pp. 62-62
Author(s):  
G.L. Verschuur ◽  
T. A. Th. Spoelstra

Polarization data at 390 and 826 MHz were obtained with the 300-foot telescope in February 1987. A survey of selected regions of sky planned for December 1988 had to be postponed. However, our limited data at 390 MHz show that the 30′ beam detected polarization temperatures between four to six times larger than found in surveys with a 1.3 arcmin resolution. This was true in both the highly polarized region around 1=140 degrees and in the North Polar Spur where polarization structures appear to be unresolved (<0.9 pc at the distance of the spur). High resolution observations will be critical to our understanding of the interstellar magnetic field and the scale-length of depolarizing structures.


1970 ◽  
Vol 36 ◽  
pp. 271-273
Author(s):  
B. B. Jones ◽  
B. C. Boland ◽  
R. Wilson ◽  
S. T. F. Engstrom

A high-resolution solar spectrum in the range 2000–2200 Å was obtained in a recent flight of a sunpointing Skylark rocket. This was launched at 04.21 hr UT on April 22, 1969 from Woomera and reached an apogee of 178 km. An optical alignment system operating on the main vehicle pointing system gave a net stabilisation of ±3 arc sec in the position of the solar image relative to the spectrograph slit. The slit, of length 1.0 mm, was set in the north-east quadrant parallel to and 5 arc min from the north/south axis, its lower edge being 1 arc min from the equator. The roll control of ±2.5° was provided entirely by the standard Elliott Bros. type of vehicle stabilisation.


Sign in / Sign up

Export Citation Format

Share Document