Decomposition and nitrogen release from leaves of three hardwood species grown under elevated O3 and/or CO2

Author(s):  
Ralph E. J. Boerner ◽  
Joanne Rebbeck
2002 ◽  
Vol 66 (3) ◽  
pp. 848 ◽  
Author(s):  
M. H. Beare ◽  
P. E. Wilson ◽  
P. M. Fraser ◽  
R. C. Butler

Carbon ◽  
1994 ◽  
Vol 32 (5) ◽  
pp. 883-895 ◽  
Author(s):  
Ken A. Grant ◽  
Qian Zhu ◽  
K.Mark Thomas
Keyword(s):  

2012 ◽  
Vol 512-515 ◽  
pp. 2135-2142 ◽  
Author(s):  
Yu Peng Wu ◽  
Zhi Yong Wen ◽  
Yue Liang Shen ◽  
Qing Yan Fang ◽  
Cheng Zhang ◽  
...  

A computational fluid dynamics (CFD) model of a 600 MW opposed swirling coal-fired utility boiler has been established. The chemical percolation devolatilization (CPD) model, instead of an empirical method, has been adapted to predict the nitrogen release during the devolatilization. The current CFD model has been validated by comparing the simulated results with the experimental data obtained from the boiler for case study. The validated CFD model is then applied to study the effects of ratio of over fire air (OFA) on the combustion and nitrogen oxides (NOx) emission characteristics. It is found that, with increasing the ratio of OFA, the carbon content in fly ash increases linearly, and the NOx emission reduces largely. The OFA ratio of 30% is optimal for both high burnout of pulverized coal and low NOx emission. The present study provides helpful information for understanding and optimizing the combustion of the studied boiler


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 357
Author(s):  
Jong Kyu Lee ◽  
Myeong Ja Kwak ◽  
Sang Hee Park ◽  
Han Dong Kim ◽  
Yea Ji Lim ◽  
...  

Plants are affected by the features of their surrounding environment, such as climate change and air pollution caused by anthropogenic activities. In particular, agricultural production is highly sensitive to environmental characteristics. Since no environmental factor is independent, the interactive effects of these factors on plants are essential for agricultural production. In this context, the interactive effects of ozone (O3) and supraoptimal temperatures remain unclear. Here, we investigated the physiological and stomatal characteristics of leaf mustard (Brassica juncea L.) in the presence of charcoal-filtered (target concentration, 10 ppb) and elevated (target concentration, 120 ppb) O3 concentrations and/or optimal (22/20 °C day/night) and supraoptimal temperatures (27/25 °C). Regarding physiological characteristics, the maximum rate of electron transport and triose phosphate use significantly decreased in the presence of elevated O3 at a supraoptimal temperature (OT conditions) compared with those in the presence of elevated O3 at an optimal temperature (O conditions). Total chlorophyll content was also significantly affected by supraoptimal temperature and elevated O3. The chlorophyll a/b ratio significantly reduced under OT conditions compared to C condition at 7 days after the beginning of exposure (DAE). Regarding stomatal characteristics, there was no significant difference in stomatal pore area between O and OT conditions, but stomatal density under OT conditions was significantly increased compared with that under O conditions. At 14 DAE, the levels of superoxide (O2-), which is a reactive oxygen species, were significantly increased under OT conditions compared with those under O conditions. Furthermore, leaf weight was significantly reduced under OT conditions compared with that under O conditions. Collectively, these results indicate that temperature is a key driver of the O3 response of B. juncea via changes in leaf physiological and stomatal characteristics.


Mycologia ◽  
1944 ◽  
Vol 36 (3) ◽  
pp. 300-306 ◽  
Author(s):  
Ross W. Davidson
Keyword(s):  

2020 ◽  
Vol 9 (1) ◽  
pp. 139-152 ◽  
Author(s):  
Xiao Zhang ◽  
Yanlu Liu ◽  
Panfang Lu ◽  
Min Zhang

AbstractA novel hydrogel slow-release nitrogen fertilizer based on sawdust with water absorbency was prepared using grafting copolymerization. Urea was incorporated as nitrogen source in a hydrogel fertilizer. Potassium persulfate (KPS) and N,N᾽-methylenebis acrylamide (MBA) were used as the initiator and cross-linker, respectively. The structure and properties of the samples were characterized by XPS, EDS, SEM, XRD and FTIR. The effects of various salt solutions, ionic strength and pH on swelling behavior were discussed. The results showed that the largest water absorbency of the sample reached 210 g/g in distilled water. In addition, the sample had the good nitrogen release property. Thus, the novel environmentally friendly hydrogel fertilizer may be widely applied to agricultural and horticultural fields.


Sign in / Sign up

Export Citation Format

Share Document