Far and Extreme Ultraviolet Spectroscopy of Hot White Dwarf Stars: A Laboratory for Element Diffusion

Author(s):  
Stephane Vennes
2002 ◽  
Vol 332 (2) ◽  
pp. 392-398 ◽  
Author(s):  
A. H. Córsico ◽  
O. G. Benvenuto ◽  
L. G. Althaus ◽  
A. M. Serenelli

2012 ◽  
Vol 8 (S293) ◽  
pp. 219-228 ◽  
Author(s):  
M. Jura

AbstractEvidence is now compelling that most externally-polluted white dwarfs derive their heavy atoms by accretion from asteroids – the building blocks of rocky planets. Optical and ultraviolet spectroscopy of a small sample of suitable white dwarf stars shows that to zeroth order, the accreted extrasolar parent bodies compositionally resemble bulk Earth. (1) Extrasolar planetesimals are at least 85% by mass composed of O, Mg, Si and Fe. (2) Compared to the Sun, C is often deficient, usually by at least a factor of 10 and therefore comprises less than 1% of an extrasolar planetesimal's mass. At least to-date, C has never been found to be enhanced as would be expected if carbon-rich planetesimals have formed. (3) While there may be individual exceptions, considered as a whole, the population of extrasolar asteroids accreted onto a well-defined sample of local white dwarf stars is less than 1% water by mass.


1979 ◽  
Vol 53 ◽  
pp. 86-106 ◽  
Author(s):  
Harry L. Shipman

Astronomers studying objects outside the solar system first used the ultraviolet, extreme ultraviolet, and x-ray regions of the electromagnetic spectrum in the 1970s. The exploration of these wavelength regions has produced considerable improvements in our understanding of these objects. The achievements of x-ray astronomy are perhaps the best known. With the advance of satellite technology, other wavelength regions begin to play a role, and x-ray astronomy moves into the luminosity domain where quiescent as well as violent astrophysical processes can produce detectable amounts of radiation. This paper reviews the current state of our interpretation of white-dwarf stars at wavelengths less than 3000 A.


1996 ◽  
Vol 152 ◽  
pp. 193-202
Author(s):  
Stéphane Vennes

The processes leading to the formation of white dwarf stars are known only in their most general principles; post-asymptotic giant branch evolution, leading to the formation of C-O degenerate cores, is possibly the main formation channel of white dwarf stars. In contrast, observations of hot white dwarf stars and studies of their main population characteristics offer detailed insights into the origin and evolution of these objects. We examine some new facts uncovered in the study of the survey of hot white dwarf stars at extreme ultraviolet (EUV) wavelengths. We describe model atmosphere techniques required to interpret these observations and discuss some implications of our findings for stellar evolution theory.


1996 ◽  
Vol 152 ◽  
pp. 491-496
Author(s):  
N. Craig ◽  
A. Fruscione ◽  
J. Dupuis ◽  
M. Mathioudakis ◽  
J.J. Drake ◽  
...  

We present optical identifications of nine previously unidentified extreme ultraviolet (EUV) sources discovered during theExtreme Ultraviolet Explorer(EUVE) satellite surveys. The all-sky survey detected four of the sources and the more sensitive deep survey detected the other five sources. Three of the four all-sky survey sources, EUVE_J1918+59.9, EUVE_J2249+58.5, and EUVE_J2329+41.4, are listed in present catalogs as having possible associations with optical counterparts but without spectral class. The first two of these sources are hot DA white dwarfs showing an optical spectrum with broad Balmer lines. The source EUVE_J2329+41.4 is listed as having a possible association with an unclassified M star. We show that a pair of dMe stars are actually optical counterparts located within the error circle of theEUVEsource position. The EUVE_J2114+503 remains unidentified even though all the possible candidates have been studied. Based on the count rates we predict a fainter white dwarf or a cataclysmic variable counterpart for this candidate. All five sources discovered with theEUVEdeep survey, EUVE_J0318+184, EUVE_J0419+217, EUVE_J2053−175, EUVE_J2056−171 and EUVE_J2233−096, have been identified as late-type stars. The spectral classes, distances, visual magnitudes, and estimated hydrogen column densities for theseEUVEsources are presented.


1989 ◽  
Vol 114 ◽  
pp. 296-299
Author(s):  
J. L. Provencal ◽  
J. C. Clemens ◽  
G. Henry ◽  
B. P. Hine ◽  
R. E. Nather ◽  
...  

White dwarf stars provide important boundary conditions for the understanding of stellar evolution. An adequate understanding of even these simple stars is impossible without detailed knowledge of their interiors. PG1346+082, an interacting binary white dwarf system, provides a unique opportunity to view the interior of one degenerate as it is brought to light in the accretion disk of the second star as the primary strips material from its less massive companion (see Wood et at. 1987).PG1346+082 is a photometric variable with a four magnitude variation over a four to five day quasi-period. A fast Fourier transform (FFT) of the light curve shows a complex, time-dependent structure of harmonics. PG1346+082 exhibits flickering – the signature of mass transfer. The optical spectra of the system contain weak emission features during minimum and broad absorption at all other times. This could be attributed to pressure broadening in the atmosphere of a compact object, or to a combination of pressure broadening and doppler broadening in a disk surrounding the compact accretor. No hydrogen lines are observed and the spectra are dominated by neutral helium. The spectra also display variable asymmetric line profiles.


2008 ◽  
Author(s):  
M. Christova ◽  
N. F. Allard ◽  
J. F. Kielkopf ◽  
D. Homeier ◽  
F. Allard ◽  
...  

2004 ◽  
Vol 602 (2) ◽  
pp. L109-L112 ◽  
Author(s):  
D. E. Winget ◽  
D. J. Sullivan ◽  
T. S. Metcalfe ◽  
S. D. Kawaler ◽  
M. H. Montgomery

2017 ◽  
Vol 598 ◽  
pp. A109 ◽  
Author(s):  
N. Giammichele ◽  
S. Charpinet ◽  
P. Brassard ◽  
G. Fontaine

Sign in / Sign up

Export Citation Format

Share Document