An Optical-Infrared Color-Color Diagram for Finding Young Stars with Infrared Excess

Author(s):  
F. Piché ◽  
F. J. Vrba ◽  
C. B. Luginbuhl
Keyword(s):  
2020 ◽  
Vol 641 ◽  
pp. A156
Author(s):  
N. Miret-Roig ◽  
N. Huélamo ◽  
H. Bouy

Context. Debris discs orbiting young stars are key to understanding dust evolution and the planetary formation process. We take advantage of a recent membership analysis of the 30 Myr nearby open cluster IC 4665 based on the Gaia and DANCe surveys to revisit the disc population of this cluster. Aims. We aim to study the disc population of IC 4665 using Spitzer (MIPS and IRAC) and WISE photometry. Methods. We use several colour–colour diagrams with empirical photospheric sequences to detect the sources with an infrared excess. Independently, we also fit the spectral energy distribution (SED) of our debris-disc candidates with the Virtual Observatory SED analyser (VOSA) which is capable of automatically detecting infrared excesses and provides effective temperature estimates. Results. We find six candidate debris-disc host stars (five with MIPS and one with WISE), two of which are new candidates. We estimate a disc fraction of 24 ± 10% for the B–A stars, where our sample is expected to be complete. This is similar to what has been reported in other clusters of similar ages (Upper Centaurus Lupus, Lower Centaurus Crux, the β Pictoris moving group, and the Pleiades). For solar-type stars we find a disc fraction of 9 ± 9%, which is lower than that observed in regions with comparable ages. Conclusions. Our candidate debris-disc host stars are excellent targets to be studied with ALMA or the future James Webb Space Telescope (JWST).


2009 ◽  
Vol 5 (H15) ◽  
pp. 731-731
Author(s):  
Isa Oliveira ◽  
Bruno Merín ◽  
Klaus Pontoppidan ◽  
Ewine van Dishoeck

AbstractUnbiased, flux-limited surveys of protoplanetary disks and their parent stars currently exist for only a few clouds, primarily Taurus and IC 348, selected primarily by optical and near-IR data. Such surveys are essential to address questions of disk evolution as a function of stellar parameters such as spectral type, age, accretion activity and environment. Using the ‘Cores to Disks’ (c2d) Spitzer Legacy Program, we discovered a new population of young stellar objects (YSOs) in a region of only 0.8 deg2 in the Serpens Molecular Cloud. This sample contains 150 mid-IR bright (≥ 3 mJy at 8 μm) YSOs with infrared excess, having a broad range of SED types and luminosities. Serpens is therefore a unique target region for obtaining a complete, well-defined sample of multi-wavelength observations of young stars in a possible evolutionary sequence. Compared with other clouds such as Taurus and Chamaeleon, Serpens has an exceptionally high star-formation rate (5.7 × 10−5 M⊙ yr−1). Follow-up complimentary observations in the optical, near- and mid-infrared (Spitzer/IRS GO3) have allowed us to characterize both the central stars and the surrounding disks. The shape and slope of the mid-infrared excess provide information on the flaring geometry of the disks. The spectral features give constraints on grain growth and mineralogy, which in turn probes heating and radial mixing. The presence of PAH features traces UV radiation, whereas Hα and Brγ are used as diagnostics of accretion. Assuming that all stars within a sufficiently small region are nearly coeval, this provides direct constraints on the importance of environment and initial conditions on disk evolution. In this meeting, we have presented our latest results on this rich populations of YSOs, as detailed in Oliveira et al. (2009, 2010). We have discussed connections between the evolution of the disks and that of their harboring stars, and the processes that determine the evolutionary sequence of protoplanetary disks.


2019 ◽  
Vol 632 ◽  
pp. A46 ◽  
Author(s):  
L. Venuti ◽  
B. Stelzer ◽  
J. M. Alcalá ◽  
C. F. Manara ◽  
A. Frasca ◽  
...  

Context. Measurements of the fraction of disk-bearing stars in clusters as a function of age indicate protoplanetary disk lifetimes ≲10 Myr. However, our knowledge of the time evolution of mass accretion in young stars over the disk lifespans is subject to many uncertainties, especially at the lowest stellar masses (M⋆). Aims. We investigate ongoing accretion activity in young stars in the TW Hydrae association (TWA). The age of the association (∼8–10 Myr) renders it an ideal target for probing the final stages of disk accretion, and its proximity (∼50 pc) enables a detailed assessment of stellar and accretion properties down to brown dwarf masses. Methods. Our sample comprises eleven TWA members with infrared excess, amounting to 85% of the total TWA population with disks. Our targets span spectral types between M0 and M9, and masses between 0.58 M⊙ and 0.02 M⊙. We employed homogeneous spectroscopic data from 300 nm to 2500 nm, obtained synoptically with the X-shooter spectrograph, to derive the individual extinction, stellar parameters, and accretion parameters for each object simultaneously. We then examined the luminosity of Balmer lines and forbidden emission lines to probe the physics of the star–disk interaction environment. Results. Disk-bearing stars represent around 24% of the total TWA population. We detected signatures of ongoing accretion for 70% of our TWA targets for which accurate measurements of the stellar parameters could be derived. This implies a fraction of accretors between 13–17% across the entire TWA (that accounts for the disk-bearing and potentially accreting members not included in our survey). The spectral emission associated with these stars reveals a more evolved stage of these accretors compared to younger PMS populations studied with the same instrument and analysis techniques (e.g., Lupus): first, a large fraction (∼50%) exhibit nearly symmetric, narrow Hα line profiles; second, over 80% of them exhibit Balmer decrements that are consistent with moderate accretion activity and optically thin emission; third, less than a third exhibit forbidden line emission in [O I] 6300 Å, which is indicative of winds and outflows activity; and fourth, only one sixth exhibit signatures of collimated jets. However, the distribution in accretion rates (Ṁacc) derived for the TWA sample closely follows that of younger regions (Lupus, Chamaeleon I, σ Orionis) over the mass range of overlap (M⋆ ∼ 0.1–0.3 M⊙). An overall correlation between Ṁacc and M⋆ is detected and best reproduced by the function Ṁacc ∝ M∝2.1±0.5. Conclusion. At least in the lowest M⋆ regimes, stars that still retain a disk at ages ∼8–10 Myr are found to exhibit statistically similar, albeit moderate, accretion levels as those measured around younger objects. This “slow” Ṁacc evolution that is apparent at the lowest masses may be associated with longer evolutionary timescales of disks around low-mass stars, which is suggested by the mass-dependent disk fractions reported in the literature within individual clusters.


2009 ◽  
Vol 5 (S266) ◽  
pp. 509-509
Author(s):  
Ignazio Pillitteri ◽  
S. J. Wolk ◽  
L. Allen ◽  
S. T. Megeath ◽  
R. A. Gutermuth ◽  
...  

AbstractStars in the very early stages of their formation are characterized by strong infrared excess and X-ray emission. We present the results of the survey of Orion A in both the infrared and X-rays obtained with the Spitzer and XMM/Newton observatories. We study the spectral-energy distribution class of the young stellar object (YSO) population using infrared colors from 2mass and Spitzer (IRAC and MIPS) and by means of X-ray fluxes, luminosities and plasma temperatures. We discuss clustering properties and spatial segregation among different infrared YSO classes to trace their formation history.


1992 ◽  
Vol 394 ◽  
pp. 628 ◽  
Author(s):  
Fred Hamann ◽  
S. E. Persson

1999 ◽  
Vol 118 (5) ◽  
pp. 2409-2423 ◽  
Author(s):  
Christopher J. Dolan and Robert D. Mathieu
Keyword(s):  

1997 ◽  
Vol 182 ◽  
pp. 391-405 ◽  
Author(s):  
Lee Hartmann

Outflows from low-mass young stellar objects are thought to draw upon the energy released by accretion onto T Tauri stars. I briefly summarize the evidence for this accretion and outline present estimates of mass accretion rates. Young stars show a very large range of accretion rates, and this has important implications for both mass ejection and for the structure of stellar magnetospheres which may truncate T Tauri disks.


2020 ◽  
Vol 501 (1) ◽  
pp. L12-L17
Author(s):  
Christina Schoettler ◽  
Richard J Parker

ABSTRACT Planetary systems appear to form contemporaneously around young stars within young star-forming regions. Within these environments, the chances of survival, as well as the long-term evolution of these systems, are influenced by factors such as dynamical interactions with other stars and photoevaporation from massive stars. These interactions can also cause young stars to be ejected from their birth regions and become runaways. We present examples of such runaway stars in the vicinity of the Orion Nebula Cluster (ONC) found in Gaia DR2 data that have retained their discs during the ejection process. Once set on their path, these runaways usually do not encounter any other dense regions that could endanger the survival of their discs or young planetary systems. However, we show that it is possible for star–disc systems, presumably ejected from one dense star-forming region, to encounter a second dense region, in our case the ONC. While the interactions of the ejected star–disc systems in the second region are unlikely to be the same as in their birth region, a second encounter will increase the risk to the disc or planetary system from malign external effects.


SoftwareX ◽  
2021 ◽  
Vol 14 ◽  
pp. 100687
Author(s):  
Claire L. Davies
Keyword(s):  

2017 ◽  
Vol 849 (2) ◽  
pp. 136 ◽  
Author(s):  
C. Tapia ◽  
S. Lizano
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document