Tree-Ring and Glacial Evidence for the Medieval Warm Epoch and the Little Ice Age in Southern South America

1994 ◽  
pp. 183-197 ◽  
Author(s):  
Ricardo Villalba
The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Maegen L Rochner ◽  
Karen J Heeter ◽  
Grant L Harley ◽  
Matthew F Bekker ◽  
Sally P Horn

Paleoclimate reconstructions for the western US show spatial variability in the timing, duration, and magnitude of climate changes within the Medieval Climate Anomaly (MCA, ca. 900–1350 CE) and Little Ice Age (LIA, ca. 1350–1850 CE), indicating that additional data are needed to more completely characterize late-Holocene climate change in the region. Here, we use dendrochronology to investigate how climate changes during the MCA and LIA affected a treeline, whitebark pine ( Pinus albicaulis Engelm.) ecosystem in the Greater Yellowstone Ecoregion (GYE). We present two new millennial-length tree-ring chronologies and multiple lines of tree-ring evidence from living and remnant whitebark pine and Engelmann spruce ( Picea engelmannii Parry ex. Engelm.) trees, including patterns of establishment and mortality; changes in tree growth; frost rings; and blue-intensity-based, reconstructed summer temperatures, to highlight the terminus of the LIA as one of the coldest periods of the last millennium for the GYE. Patterns of tree establishment and mortality indicate conditions favorable to recruitment during the latter half of the MCA and climate-induced mortality of trees during the middle-to-late LIA. These patterns correspond with decreased growth, frost damage, and reconstructed cooler temperature anomalies for the 1800–1850 CE period. Results provide important insight into how past climate change affected important GYE ecosystems and highlight the value of using multiple lines of proxy evidence, along with climate reconstructions of high spatial resolution, to better describe spatial and temporal variability in MCA and LIA climate and the ecological influence of climate change.


2013 ◽  
Vol 9 (3) ◽  
pp. 2277-2308
Author(s):  
R. de Jong ◽  
L. von Gunten ◽  
A. Maldonado ◽  
M. Grosjean

Abstract. High-resolution reconstructions of climate variability that cover the past millennia are necessary to improve the understanding of natural and anthropogenic climate change across the globe. Although numerous records are available for the mid- and high-latitudes of the Northern Hemisphere, global assessments are still compromised by the scarcity of data from the Southern Hemisphere. This is particularly the case for the tropical and subtropical areas. In addition, high elevation sites in the South American Andes may provide insight into the vertical structure of climate change in the mid-troposphere. This study presents a 3000 yr long austral summer (November to February) temperature reconstruction derived from the 210Pb and 14C dated organic sediments of Laguna Chepical (32°16' S/70°30' W, 3050 m a.s.l.), a high-elevation glacial lake in the subtropical Andes of central Chile. Scanning reflectance spectroscopy in the visible light range provided the spectral index R570/R630, which reflects the clay mineral content in lake sediments. For the calibration period (AD 1901–2006), the R570/R630 data were regressed against monthly meteorological reanalysis data, showing that this proxy was strongly and significantly correlated with mean summer (NDJF) temperatures (R3yr = −0.63, padj = 0.01). This calibration model was used to make a quantitative temperature reconstruction back to 1000 BC. The reconstruction (with a model error RMSEPboot of 0.33 °C) shows that the warmest decades of the past 3000 yr occurred during the calibration period. The 19th century (end of the Little Ice Age (LIA)) was cool. The prominent warmth reconstructed for the 18th century, which was also observed in other records from this area, seems systematic for subtropical and southern South America but remains difficult to explain. Except for this warm period, the LIA was generally characterized by cool summers. Back to AD 1400, the results from this study compare remarkably well to low altitude records from the Chilean Central Valley and Southern South America. However, the reconstruction from Laguna Chepical does not show a warm Medieval Climate Anomaly during the 12–13th century, which is consistent with records from tropical South America. The Chepical record also indicates substantial cooling prior to 800 BC. This coincides with well-known regional as well as global glacier advances which have been attributed to a grand solar minimum. This study thus provides insight into the climatic drivers and temperature patterns in a region for which currently very few data are available. It also shows that since ca AD 1400, long term temperature patterns were generally similar at low and high altitudes in central Chile.


Author(s):  
Adam Sookdeo ◽  
Bernd Kromer ◽  
Florian Adolphi ◽  
Jürg Beer ◽  
Nicolas Brehm ◽  
...  

<p>The Younger Dryas stadial (YD) was a return to glacial-like conditions in the North Atlantic region that interrupted deglacial warming around 12900 cal BP (before 1950 AD). Terrestrial and marine records suggest this event was initiated by the interruption of deep-water formation arising from North American freshwater runoff, but the causes of the millennia-long duration remain unclear. To investigate the solar activity, a possible YD driver, we exploit the cosmic production signals of tree-ring radiocarbon (<sup>14</sup>C) and ice-core beryllium-10 (<sup>10</sup>Be). Here we present the highest temporally resolved dataset of <sup>14</sup>C measurements (n = 1558) derived from European tree rings that have been accurately extended back to 14226 cal BP (±8, 2-σ), allowing precise alignment of ice-core records across this period. We identify a substantial increase in <sup>14</sup>C and <sup>10</sup>Be production starting at 12780 cal BP is comparable in magnitude to the historic Little Ice Age, being a clear sign of grand solar minima. We hypothesize the timing of the grand solar minima provides a significant amplifying factor leading to the harsh sustained glacial-like conditions seen in the YD.</p>


2020 ◽  
Vol 228 ◽  
pp. 106087 ◽  
Author(s):  
A. Lara ◽  
R. Villalba ◽  
R. Urrutia-Jalabert ◽  
A. González-Reyes ◽  
J.C. Aravena ◽  
...  

Radiocarbon ◽  
2004 ◽  
Vol 46 (2) ◽  
pp. 987-995 ◽  
Author(s):  
F B Knox ◽  
B G McFadgen

Least-squares fitted smooth curves to radiocarbon versus tree-ring calibration data for the period AD 1140 to 1950 are compared with climatic warming and cooling of the North Atlantic (Little Ice Age), and with recorded sunspot numbers over the period AD 1670 to 1950.Calibration curves from different parts of the globe are not identical, and appear to be determined by a combination of variable solar activity and variable oceanic upwelling of 14C-depleted water, with the variable upwelling itself partly determined by solar activity.


Sign in / Sign up

Export Citation Format

Share Document