Nitrate transformation and water movement in a wetland area

Author(s):  
Walter Brüsch ◽  
Bertel Nilsson
Keyword(s):  
Hydrobiologia ◽  
1993 ◽  
Vol 251 (1-3) ◽  
pp. 103-111 ◽  
Author(s):  
Walter Br�sch ◽  
Bertel Nilsson
Keyword(s):  

Fine Focus ◽  
2014 ◽  
Vol 1 (1) ◽  
pp. 20-28
Author(s):  
Rachel A. Habegger ◽  
Jordan M. Marshall

Land use adjacent to waterways, such as development or agriculture, alters hydrological patterns leading to increases in runoff and nutrient input. Forests and wetlands, as natural land cover types, reduce water movement and allow infiltration into soil. We measured algal biomass and diversity in order to quantify the influence neighboring land cover types have on streams in Northeastern Indiana. In the study area, cultivated crops were the dominant land cover type, with open development and deciduous forest following. Emergent wetland area had the greatest influence on algal biomass, with increases in wetland area decreasing biomass. However, open development, low intensity development, grassland, shrub, and forested wetlands added to increases in biomass. Conversely, forested wetlands reduced algal richness, while open development and pastures increased richness. Because open development (i.e. dominated by turf grass, lawns, parks, golf courses) was the second most common land cover type and positively influenced both algal biomass and richness, management of those properties will likely have direct impact on nutrient flow into streams. Additionally, adding functional wetlands dominated by emergent herbaceous plants will directly impact future algal biomass.


1981 ◽  
Vol 11 ◽  
Author(s):  
M.H. Bradbury ◽  
D. Lever ◽  
D. Kinsey

One of the options being considered for the disposal of radioactive waste is deep burial in crystalline rocks such as granite. It is generally recognised that in such rocks groundwater flows mainly through the fracture networks so that these will be the “highways” for the return of radionuclides to the biosphere. The main factors retarding the radionuclide transport have been considered to be the slow water movement in the fissures over the long distances involved together with sorption both in man-made barriers surrounding the waste, and onto rock surfaces and degradation products in the fissures.


1965 ◽  
Vol 29 (5) ◽  
pp. 636 ◽  
Author(s):  
W. O. Willis ◽  
D. R. Nielsen ◽  
J. W. Biggar
Keyword(s):  

2020 ◽  
Vol 963 (9) ◽  
pp. 53-64
Author(s):  
V.F. Kovyazin ◽  
Thi Lan Anh Dang ◽  
Viet Hung Dang

Tram Chim National Park in Southern Vietnam is a wetland area included in the system of specially protected natural areas (SPNA). For the purposes of land monitoring, we studied Landsat-5 and Sentinel-2B images obtained in 1991, 2006 and 2019. The methods of normalized difference vegetation index (NDVI) and water objects – normalized difference water index (NDWI) were used to estimate the vegetation in National Park. The allocated land is classifi ed by the maximum likelihood method in ENVI 5.3 into categories. For each image, a statistical analysis of the land after classifi cation was performed. Between 1991 and 2019, land changes occurred in about 57 % of the Tram Chim National Park total area. As a result, the wetland area has signifi cantly reduced there due to climate change. However, the area of Melaleuca forests in Tram Chim National Park has increased due to the effi ciency of reforestation in protected areas. Melaleuca forests are also being restored.


Sign in / Sign up

Export Citation Format

Share Document