Quantum Processes near Cosmic-Strings

Author(s):  
Jürgen Audretsch ◽  
Athanasios Economou
Author(s):  
Bob Coecke ◽  
Aleks Kissinger
Keyword(s):  

1984 ◽  
Vol 45 (9) ◽  
pp. 1533-1541 ◽  
Author(s):  
R. Buisson ◽  
J.Q. Liu ◽  
J.C. Vial

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Klaas Parmentier

Abstract We demonstrate that all rigidly rotating strings with center of mass at the origin of the dS3 static patch satisfy the Higuchi bound. This extends the observation of Noumi et al. for the open GKP-like string to all solutions of the Larsen-Sanchez class. We argue that strings violating the bound end up expanding towards the horizon and provide a numerical example. Adding point masses to the open string only increases the mass/spin ratio. For segmented strings, we write the conserved quantities, invariant under Gubser’s algebraic evolution equation, in terms of discrete lightcone coordinates describing kink collisions. Randomly generated strings are found to have a tendency to escape through the horizon that is mostly determined by their energy. For rapidly rotating segmented strings with mass/spin < 1, the kink collisions eventually become causally disconnected. Finally we consider the scenario of cosmic strings captured by a black hole in dS and find that horizon friction can make the strings longer.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Joydeep Chakrabortty ◽  
George Lazarides ◽  
Rinku Maji ◽  
Qaisar Shafi

Abstract We consider magnetic monopoles and strings that appear in non-supersymmetric SO(10) and E6 grand unified models paying attention to gauge coupling unification and proton decay in a variety of symmetry breaking schemes. The dimensionless string tension parameter Gμ spans the range 10−6− 10−30, where G is Newton’s constant and μ is the string tension. We show how intermediate scale monopoles with mass ∼ 1013− 1014 GeV and flux ≲ 2.8 × 10−16 cm−2s−1sr−1, and cosmic strings with Gμ ∼ 10−11− 10−10 survive inflation and are present in the universe at an observable level. We estimate the gravity wave spectrum emitted from cosmic strings taking into account inflation driven by a Coleman-Weinberg potential. The tensor-to-scalar ratio r lies between 0.06 and 0.003 depending on the details of the inflationary scenario.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Graeme Pleasance ◽  
Barry M. Garraway ◽  
Francesco Petruccione
Keyword(s):  

2021 ◽  
Vol 126 (21) ◽  
Author(s):  
Daniel Stilck França ◽  
Sergii Strelchuk ◽  
Michał Studziński

Sign in / Sign up

Export Citation Format

Share Document