Coriolis Force And Centrifugal Force Induced Flow Instabilities

Author(s):  
Innocent Mutabazi ◽  
José Eduardo Wesfreid
2018 ◽  
Vol 141 (4) ◽  
Author(s):  
Giovanni Pace ◽  
Dario Valentini ◽  
Angelo Pasini ◽  
Ruzbeh Hadavandi ◽  
Luca d'Agostino

The paper describes the results of recent experiments carried out in the Cavitating Pump Rotordynamic Test Facility for the dynamic characterization of cavitation-induced flow instabilities as simultaneously observed in the stationary and rotating frames of a high-head, three-bladed axial inducer with tapered hub and variable pitch. The flow instabilities occurring in the eye and inside the blading of the inducer have been detected, identified, and monitored by means of the spectral analysis of the pressure measurements simultaneously performed in the stationary and rotating frames by multiple transducers mounted on the casing near the inducer eye and on the inducer hub along the blade channels. An interaction between the unstable flows in the pump inlet and in the blade channels during cavitating regime has been detected. The interaction is between a low frequency axial phenomenon, which cyclically fills and empties each blade channel with cavitation, and a rotating phenomenon detected in the inducer eye.


2012 ◽  
Vol 455-456 ◽  
pp. 1480-1485
Author(s):  
Xiang Xiao ◽  
Wei Xin Ren ◽  
Wen Yu He

Considering centrifugal force and Coriolis force caused by the real-time deformation of bridge, a vehicle-bridge interaction model is established. Take simply supported bridge subjected to an one-axle vehicle for example, the mass matrix, damping matrix, stiffness matrix and load vector of the vehicle-bridge system are derived via modal analysis method, thus the vertical motion equation of vehicle-bridge system, which can better reflect the operation characteristics of vehicles running on the bridge, has been established.


1994 ◽  
Vol 274 ◽  
pp. 243-265 ◽  
Author(s):  
O. John E. Matsson ◽  
P. Henrik Alfredsson

An experimental study is reported of the flow in a high-aspect-ratio curved air channel with spanwise system rotation, utilizing hot-wire measurements and smoke visualization. The experiments were made at two different Dean numbers (De), approximately 2 and 4.5 times the critical De for which the flow becomes unstable and develops streamwise vortices. For the lower De without system rotation the primary Dean instability appeared as steady longitudinal vortices. It was shown that negative spanwise system rotation, i.e. the Coriolis force counteracts the centrifugal force, could cancel the primary Dean instability and that for high rotation rates it could give rise to vortices on the inner convex channel wall. For positive spanwise system rotation, i.e. when the Coriolis force enhanced the centrifugal force, splitting and merging of vortex pairs were observed. At the higher De secondary instabilities occurred in the form of travelling waves. The effect of spanwise system rotation on the secondary instability was studied and was found to reduce the amplitude of the twisting and undulating motions for low negative rotation. For low positive rotation the amplitude of the secondary instabilities was unaffected for most regions in parameter space.


2021 ◽  
Vol 127 (24) ◽  
Author(s):  
Yun-Bing Hu ◽  
Shi-Di Huang ◽  
Yi-Chao Xie ◽  
Ke-Qing Xia

2017 ◽  
Vol 111 (11) ◽  
pp. 114101 ◽  
Author(s):  
Amanda M. Lietz ◽  
Eric Johnsen ◽  
Mark J. Kushner

2000 ◽  
Vol 6 (1) ◽  
pp. 1-9
Author(s):  
Je Hyun Baekt ◽  
Chang Hwan Ko

A numerical study is conducted on the fully-developed laminar flow of an incompressible viscous fluid in a square duct rotating about a perpendicular axis to the axial direction of the duct. At the straight duct, the rotation produces vortices due to the Coriolis force. Generally two vortex cells are formed and the axial velocity distribution is distorted by the effect of this Coriolis force. When a convective force is weak, two counter-rotating vortices are shown with a quasi-parabolic axial velocity profile for weak rotation rates. As the rotation rate increases, the axial velocity on the vertical centreline of the duct begins to flatten and the location of vorticity center is moved near to wall by the effect of the Coriolis force. When the convective inertia force is strong, a double-vortex secondary flow appears in the transverse planes of the duct for weak rotation rates but as the speed of rotation increases the secondary flow is shown to split into an asymmetric configuration of four counter-rotating vortices. If the rotation rates are increased further, the secondary flow restabilizes to a slightly asymmetric double-vortex configuration. Also, a numerical study is conducted on the laminar flow of an incompressible viscous fluid in a90°-bend square duct that rotates about axis parallel to the axial direction of the inlet. At a90°-bend square duct, the feature of flow by the effect of a Coriolis force and a centrifugal force, namely a secondary flow by the centrifugal force in the curved region and the Coriolis force in the downstream region, is shown since the centrifugal force in curved region and the Coriolis force in downstream region are dominant respectively.


Sign in / Sign up

Export Citation Format

Share Document