Cavitation — A little noticed Factor in the Operation of Mechanical Seals

Author(s):  
D. Zeus
Keyword(s):  
Author(s):  
S. Elhanafi ◽  
K. Farhang

This paper considers leakage in mechanical seals under hydrostatic operating condition. A contact model based on the Greenwood and Williamson contact of rough surfaces is developed for treating problems involving mechanical seals in which both the micron scale roughness of the seal face and its macro scale profile are used to obtain either a closed-form equation or a nonlinear equation relating mean plane separation to the mass flow rate. The equations involve the micron scale geometry of the rough surfaces and physical parameter of the seal and carriage. Under hydrostatic condition, it is shown that there is an approximate closed-form solution in which mass flow rate in terms of the mean plane separation, or alternatively, the mean plane separation in terms of the leakage mass flow rate is found. Equations pertaining to leakage in nominally flat seal macro profile is considered and closed form equation relating to leakage flow rate to pressure difference is obtained that contain macro and micron geometries of the seal.


Author(s):  
Jingjing Luo ◽  
Dieter Brillert

Abstract Dry gas lubricated non-contacting mechanical seals (DGS), most commonly found in centrifugal compressors, prevent the process gas flow into the atmosphere. Especially when high speed is combined with high pressure, DGS is the preferred choice over other sealing alternatives. In order to investigate the flow field in the sealing gap and to facilitate the numerical prediction of the seal performance, a dedicated test facility is developed to carry out the measurement of key parameters in the gas film. Gas in the sealing film varies according to the seal inlet pressure, and the thickness of gas film depends on this fluctuated pressure. In this paper, the test facility, measurement methods and the first results of static pressure measurements in the sealing gap of the DGS obtained in the described test facility are presented. An industry DGS with three-dimensional grooves on the surface of the rotating ring, where experimental investigations take place, is used. The static pressure in the gas film is measured, up to 20 bar and 8,100 rpm, by several high frequency ultraminiature pressure transducers embedded into the stationary ring. The experimental results are discussed and compared with the numerical model programmed in MATLAB, the characteristic and magnitude of which have a good agreement with the numerical simulations. It suggests the feasibility of measuring pressure profiles of the standard industry DGS under pressurized dynamic operating conditions without altering the key components of the seal and thereby affecting the seal performance.


Author(s):  
Slawomir Blasiak

Noncontacting mechanical seals with various kinds of face surface modifications have established their position in the sealing technique. Over the last few years, a lot of works dedicated to the impact of various surface modifications on the dynamics of working rings have been created. This paper presents model studies regarding relatively unknown noncontacting impulse gas face seals. Here, a mathematical model of impulse gas face seals is developed including the nonlinear Reynolds equation and stator dynamics equations, which were solved simultaneously using numerical methods. An original computer software written in C + + language was developed. A number of numerical tests were conducted and the phenomena occurring in the radial gap during seal operation were analyzed. Final conclusions were drawn and several features were indicated characterizing impulse face seals. It should be emphasized that numerical research on this type of seals has not been published yet. The literature usually presents simplified models for the noncompressible medium, which can be solved with the use of analytical methods.


Friction ◽  
2018 ◽  
Vol 7 (6) ◽  
pp. 572-586
Author(s):  
Hossein Towsyfyan ◽  
Fengshou Gu ◽  
Andrew D. Ball ◽  
Bo Liang

2010 ◽  
Vol 36 ◽  
pp. 68-74
Author(s):  
Chuan Jun Liao ◽  
Shuang Fu Suo ◽  
Wei Feng Huang

Acoustic emission (AE) techniques are put forward to monitor rub-impacts between rotating rings and stationary rings of mechanical seals by this paper. By analyzing feature extraction methods of the typical rub-impact AE signal, the method combining of wavelet scalogram and power spectrum is found useful, and can used to attribute the feature information implicated in rub-impact AE signals of mechanical seal end faces. Both simulations and experimental research prove that the method is effective, and are used successfully to identify the typical features of different types of rub-impacts of mechanical seal end faces.


Sign in / Sign up

Export Citation Format

Share Document