Morphological Criteria Of the Toughness Of Polymer Blends

Author(s):  
Goerg H. Michler
Author(s):  
A. Manolova ◽  
S. Manolov

Relatively few data on the development of the amygdaloid complex are available only at the light microscopic level (1-3). The existence of just general morphological criteria requires the performance of other investigations in particular ultrastructural in order to obtain new and more detailed information about the changes in the amygdaloid complex during development.The prenatal and postnatal development of rat amygdaloid complex beginning from the 12th embrionic day (ED) till the 33rd postnatal day (PD) has been studied. During the early stages of neurogenesis (12ED), the nerve cells were observed to be closely packed, small-sized, with oval shape. A thin ring of cytoplasm surrounded their large nuclei, their nucleoli being very active with various size and form (Fig.1). Some cells possessed more abundant cytoplasm. The perikarya were extremely rich in free ribosomes. Single sacs of the rough endoplasmic reticulum and mitochondria were observed among them. The mitochondria were with light matrix and possessed few cristae. Neural processes were viewed to sprout from some nerve cells (Fig.2). Later the nuclei were still comparatively large and with various shape.


Author(s):  
E. G. Rightor

Core edge spectroscopy methods are versatile tools for investigating a wide variety of materials. They can be used to probe the electronic states of materials in bulk solids, on surfaces, or in the gas phase. This family of methods involves promoting an inner shell (core) electron to an excited state and recording either the primary excitation or secondary decay of the excited state. The techniques are complimentary and have different strengths and limitations for studying challenging aspects of materials. The need to identify components in polymers or polymer blends at high spatial resolution has driven development, application, and integration of results from several of these methods.


Author(s):  
William A. Heeschen

Two new morphological measurements based on digital image analysis, CoContinuity and CoContinuity Balance, have been developed and implemented for quantitative measurement of morphology in polymer blends. The morphology of polymer blends varies with phase ratio, composition and processing. A typical morphological evolution for increasing phase ratio of polymer A to polymer B starts with discrete domains of A in a matrix of B (A/B < 1), moves through a cocontinuous distribution of A and B (A/B ≈ 1) and finishes with discrete domains of B in a matrix of A (A/B > 1). For low phase ratios, A is often seen as solid convex particles embedded in the continuous B phase. As the ratio increases, A domains begin to evolve into irregular shapes, though still recognizable as separate domains. Further increase in the phase ratio leads to A domains which extend into and surround the B phase while the B phase simultaneously extends into and surrounds the A phase.


Polymer News ◽  
2005 ◽  
Vol 30 (9) ◽  
pp. 296-300
Author(s):  
F. Esposito ◽  
V. Casuscelli ◽  
M. V. Volpe ◽  
G. Carotenuto ◽  
L. Nicolais

1990 ◽  
Vol 51 (2) ◽  
pp. 185-200 ◽  
Author(s):  
Zhen-Gang Wang ◽  
S.A. Safran

1989 ◽  
Vol 50 (3) ◽  
pp. 245-253 ◽  
Author(s):  
M.G. Brereton ◽  
T.A. Vilgis
Keyword(s):  

2003 ◽  
Vol 18 (2) ◽  
pp. 151-155 ◽  
Author(s):  
L. S. Pinchuk ◽  
V. A. Goldade ◽  
A. G. Kravtsov ◽  
S. V. Zotov ◽  
B. Jurkowski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document