Potential Role of Gas Hydrate Decomposition in Generating Submarine Slope Failures

Author(s):  
Charles K. Pauli ◽  
William Ussler ◽  
William P. Dillon
2007 ◽  
Vol 237 (3-4) ◽  
pp. 169-190 ◽  
Author(s):  
N. Sultan ◽  
M. Voisset ◽  
B. Marsset ◽  
T. Marsset ◽  
E. Cauquil ◽  
...  

2007 ◽  
Vol 44 (3) ◽  
pp. 314-325 ◽  
Author(s):  
M F Nixon ◽  
J LH Grozic

Gas hydrates are icelike compounds composed of water and methane gas in very compact form. There is substantial evidence from case histories that links gas hydrate dissociation to submarine slope failures and other geohazards. Theoretical analyses have also shown that upon dissociation gas hydrates will cause an increase in fluid pressure and a reduction in effective stress and thus result in loss of the soil strength. This paper presents a preliminary quantification of the effects of gas hydrate dissociation through development of a pore-pressure model that was incorporated into one- and two-dimensional slope stability analyses. The ensuing numerical study investigated submarine slope stability through parametric studies and application to two important case histories and found that dissociation of even small amounts of hydrate can have a significant destabilizing effect. Yet whether gas hydrate dissociation can alone cause large-scale slope failures has still to be demonstrated as there are often many destabilizing processes; however, this research highlights the importance of assessing the effects of gas hydrate dissociation on the behaviour of submarine slopes.Key words: gas hydrates, slope stability, marine, offshore, methane gas, instability.


2019 ◽  
Vol 47 (5) ◽  
pp. 1393-1404 ◽  
Author(s):  
Thomas Brand

Abstract The Popeye domain-containing gene family encodes a novel class of cAMP effector proteins in striated muscle tissue. In this short review, we first introduce the protein family and discuss their structure and function with an emphasis on their role in cyclic AMP signalling. Another focus of this review is the recently discovered role of POPDC genes as striated muscle disease genes, which have been associated with cardiac arrhythmia and muscular dystrophy. The pathological phenotypes observed in patients will be compared with phenotypes present in null and knockin mutations in zebrafish and mouse. A number of protein–protein interaction partners have been discovered and the potential role of POPDC proteins to control the subcellular localization and function of these interacting proteins will be discussed. Finally, we outline several areas, where research is urgently needed.


Author(s):  
Katherine Guérard ◽  
Sébastien Tremblay

In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.


Sign in / Sign up

Export Citation Format

Share Document