Finite transitive permutation groups and finite vertex-transitive graphs

1997 ◽  
pp. 277-318 ◽  
Author(s):  
Cheryl E. Praeger ◽  
Cai Heng Li ◽  
Alice C. Niemeyer
2001 ◽  
Vol 33 (6) ◽  
pp. 653-661 ◽  
Author(s):  
CAI HENG LI ◽  
CHERYL E. PRAEGER

A construction is given of an infinite family of finite self-complementary, vertex-transitive graphs which are not Cayley graphs. To the authors' knowledge, these are the first known examples of such graphs. The nature of the construction was suggested by a general study of the structure of self-complementary, vertex-transitive graphs. It involves the product action of a wreath product of permutation groups.


10.37236/7499 ◽  
2018 ◽  
Vol 25 (2) ◽  
Author(s):  
Dragan Marušič

It has been conjectured that automorphism groups of vertex-transitive (di)graphs, and more generally $2$-closures of transitive permutation groups, must necessarily possess a fixed-point-free element of prime order, and thus a non-identity element with all orbits of the same length, in other words, a semiregular element. It is the purpose of this paper to prove that vertex-transitive graphs of order $3p^2$, where $p$ is a prime, contain semiregular automorphisms.


1982 ◽  
Vol 34 (2) ◽  
pp. 307-318 ◽  
Author(s):  
Brian Alspach ◽  
T. D. Parsons

A useful general strategy for the construction of interesting families of vertex-transitive graphs is to begin with some family of transitive permutation groups and to construct for each group Γ in the family all graphs G whose vertex–set is the orbit V of Γ and for which Γ ≦ Aut (G), where Aut (G) denotes the automorphism group of G. For example, if we consider the family of cyclic groups 〈(0 1 … n – 1)〉 generated by cycles (0, 1 … n – 1) of length n, then the corresponding graphs are the n-vertex circulant graphs.In this paper we consider transitive permutation groups of degree mn generated by a “rotation” ρ which is a product of m disjoint cycles of length n and by a “twisted translation” t; such that τρτ–l = ρα for some α.


2008 ◽  
Vol 15 (03) ◽  
pp. 379-390 ◽  
Author(s):  
Xuesong Ma ◽  
Ruji Wang

Let X be a simple undirected connected trivalent graph. Then X is said to be a trivalent non-symmetric graph of type (II) if its automorphism group A = Aut (X) acts transitively on the vertices and the vertex-stabilizer Av of any vertex v has two orbits on the neighborhood of v. In this paper, such graphs of order at most 150 with the basic cycles of prime length are investigated, and a classification is given for such graphs which are non-Cayley graphs, whose block graphs induced by the basic cycles are non-bipartite graphs.


1994 ◽  
Vol 3 (4) ◽  
pp. 435-454 ◽  
Author(s):  
Neal Brand ◽  
Steve Jackson

In [11] it is shown that the theory of almost all graphs is first-order complete. Furthermore, in [3] a collection of first-order axioms are given from which any first-order property or its negation can be deduced. Here we show that almost all Steinhaus graphs satisfy the axioms of almost all graphs and conclude that a first-order property is true for almost all graphs if and only if it is true for almost all Steinhaus graphs. We also show that certain classes of subgraphs of vertex transitive graphs are first-order complete. Finally, we give a new class of higher-order axioms from which it follows that large subgraphs of specified type exist in almost all graphs.


Sign in / Sign up

Export Citation Format

Share Document