Assessing Population Subdivision

Author(s):  
James F. Crow
Author(s):  
Aparna . Veluru ◽  
Kanwar P. Singh ◽  
Namita . . ◽  
Sapna . Panwar ◽  
Gayacharan . . ◽  
...  

Roses are the most important commercial ornamental plants grown for flowers, perfumery and nutraceutical compounds. Commercially cultivated roses (Rosa × hybrida L.) are complex interspecific hybrids probably derived from 8-10 wild species among the large diversity of 130-200 species in genus Rosa. Wild germplasm is a primary source of variability and plays a major role in improving existing varieties by broadening their genetic base. In the present investigation, we have utilized the previously identified SSR primers for studying the diversity among 148 selected rose genotypes, including wild species and cultivated varieties of Indian and exotic origin. A total of 88 alleles was scored using 30 polymorphic loci; they produced average 2.9±1 alleles per locus. Polymorphism information content (PIC) values for different SSR loci ranged from 0.08 to 0.8 with a mean value of 0.5±0.2. The neighbor-joining tree generated based on Nei’s (1978) genetic distance values grouped the population into three major clusters. Cluster-I and II consists of all modern rose cultivars (Rosa × hybrida L.) originated from India and cluster-III consists of all exotic cultivars, wild species and a few cultivars from India. STRUCTURE analysis based on microsatellite allelic data, partitioned the total rose genotypes into four different sub-populations with some individual genotypes having genomic admixture. Population subdivision estimates, FST between different subpopulations ranged from 0.01-0.15 indicates low to moderate level of divergence existing among the rose cultivars and germplasm. Population differentiation in rose cultivars and wild species corresponds to their geographical origin and lineages. Analysis of molecular variance (AMOVA) results revealed that 83.12 % of the variance was accounted for by within sub-groups followed by significant levels of variation among the populations (10.42%) and least variance (6.46%) was noticed among individuals within groups.


Genetics ◽  
1994 ◽  
Vol 136 (2) ◽  
pp. 685-692 ◽  
Author(s):  
Y X Fu

Abstract A new estimator of the essential parameter theta = 4Ne mu from DNA polymorphism data is developed under the neutral Wright-Fisher model without recombination and population subdivision, where Ne is the effective population size and mu is the mutation rate per locus per generation. The new estimator has a variance only slightly larger than the minimum variance of all possible unbiased estimators of the parameter and is substantially smaller than that of any existing estimator. The high efficiency of the new estimator is achieved by making full use of phylogenetic information in a sample of DNA sequences from a population. An example of estimating theta by the new method is presented using the mitochondrial sequences from an American Indian population.


Genetics ◽  
1986 ◽  
Vol 113 (4) ◽  
pp. 939-965
Author(s):  
Eldredge Bermingham ◽  
John C Avise

ABSTRACT Restriction fragment length polymorphisms in mitochondrial DNA (mtDNA) were used to reconstruct evolutionary relationships of conspecific populations in four species of freshwater fish—Amia calva, Lepomis punctatus, L. gulosus, and L. microlophus. A suite of 14-17 endonucleases was employed to assay mtDNAs from 305 specimens collected from 14 river drainages extending from South Carolina to Louisiana. Extensive mtDNA polymorphism was observed within each assayed species. In both phenograms and Wagner parsimony networks, mtDNA clones that were closely related genetically were usually geographically contiguous. Within each species, major mtDNA phylogenetic breaks also distinguished populations from separate geographic regions, demonstrating that dispersal and gene flow have not been sufficient to override geographic influences on population subdivision.—Importantly, there were strong patterns of congruence across species in the geographic placements of the mtDNA phylogenetic breaks. Three major boundary regions were characterized by concentrations of phylogenetic discontinuities, and these zones agree well with previously described zoogeographic boundaries identified by a different kind of data base—distributional limits of species—suggesting that a common set of historical factors may account for both phenomena. Repeated episodes of eustatic sea level change along a relatively static continental morphology are the likely causes of several patterns of drainage isolation and coalescence, and these are discussed in relation to the genetic data.—Overall, results exemplify the positive role that intraspecific genetic analyses may play in historical zoogeographic reconstruction. They also point out the potential inadequacies of any interpretations of population genetic structure that fail to consider the influences of history in shaping that structure.


Genetics ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 381-387
Author(s):  
B Law ◽  
J S Buckleton ◽  
C M Triggs ◽  
B S Weir

Abstract The probability of multilocus genotype counts conditional on allelic counts and on allelic independence provides a test statistic for independence within and between loci. As the number of loci increases and each sampled genotype becomes unique, the conditional probability becomes a function of total heterozygosity. In that case, it does not address between-locus dependence directly but only indirectly through detection of the Wahlund effect. Moreover, the test will reject the hypothesis of allelic independence only for small values of heterozygosity. Low heterozygosity is expected for population subdivision but not for population admixture. The test may therefore be inappropriate for admixed populations. If individuals with parents in two different populations are always considered to belong to one of the populations, then heterozygosity is increased in that population and the exact test should not be used for sparse data sets from that population. If such a case is suspected, then alternative testing strategies are suggested.


Genetics ◽  
2001 ◽  
Vol 158 (1) ◽  
pp. 279-290 ◽  
Author(s):  
Jorge Vieira ◽  
Bryant F McAllister ◽  
Brian Charlesworth

Abstract We analyze genetic variation at fused1, a locus that is close to the centromere of the X chromosome-autosome (X/4) fusion in Drosophila americana. In contrast to other X-linked and autosomal genes, for which a lack of population subdivision in D. americana has been observed at the DNA level, we find strong haplotype structure associated with the alternative chromosomal arrangements. There are several derived fixed differences at fused1 (including one amino acid replacement) between two haplotype classes of this locus. From these results, we obtain an estimate of an age of ∼0.61 million years for the origin of the two haplotypes of the fused1 gene. Haplotypes associated with the X/4 fusion have less DNA sequence variation at fused1 than haplotypes associated with the ancestral chromosome arrangement. The X/4 haplotypes also exhibit clinal variation for the allele frequencies of the three most common amino acid replacement polymorphisms, but not for adjacent silent polymorphisms. These patterns of variation are best explained as a result of selection acting on amino acid substitutions, with geographic variation in selection pressures.


Genetics ◽  
1987 ◽  
Vol 117 (1) ◽  
pp. 149-153
Author(s):  
Curtis Strobeck

ABSTRACT Unbiased estimates of θ = 4Nµ in a random mating population can be based on either the number of alleles or the average number of nucleotide differences in a sample. However, if there is population structure and the sample is drawn from a single subpopulation, these two estimates of θ behave differently. The expected number of alleles in a sample is an increasing function of the migration rates, whereas the expected average number of nucleotide differences is shown to be independent of the migration rates and equal to 4N  Tµ for a general model of population structure which includes both the island model and the circular stepping-stone model. This contrast in the behavior of these two estimates of θ is used as the basis of a test for population subdivision. Using a Monte-Carlo simulation developed so that independent samples from a single subpopulation could be obtained quickly, this test is shown to be a useful method to determine if there is population subdivision.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1385-1395
Author(s):  
Claus Vogl ◽  
Aparup Das ◽  
Mark Beaumont ◽  
Sujata Mohanty ◽  
Wolfgang Stephan

Abstract Population subdivision complicates analysis of molecular variation. Even if neutrality is assumed, three evolutionary forces need to be considered: migration, mutation, and drift. Simplification can be achieved by assuming that the process of migration among and drift within subpopulations is occurring fast compared to mutation and drift in the entire population. This allows a two-step approach in the analysis: (i) analysis of population subdivision and (ii) analysis of molecular variation in the migrant pool. We model population subdivision using an infinite island model, where we allow the migration/drift parameter 0398; to vary among populations. Thus, central and peripheral populations can be differentiated. For inference of 0398;, we use a coalescence approach, implemented via a Markov chain Monte Carlo (MCMC) integration method that allows estimation of allele frequencies in the migrant pool. The second step of this approach (analysis of molecular variation in the migrant pool) uses the estimated allele frequencies in the migrant pool for the study of molecular variation. We apply this method to a Drosophila ananassae sequence data set. We find little indication of isolation by distance, but large differences in the migration parameter among populations. The population as a whole seems to be expanding. A population from Bogor (Java, Indonesia) shows the highest variation and seems closest to the species center.


1999 ◽  
Vol 89 (8) ◽  
pp. 623-630 ◽  
Author(s):  
U. Liane Rosewich ◽  
R. E. Pettway ◽  
Talma Katan ◽  
H. C. Kistler

Fusarium oxysporum isolates from tomato plants displaying crown and root rot symptoms were collected in central and southern Florida and analyzed using vegetative compatibility grouping (VCG) and nuclear restriction fragment length polymorphism (RFLP) data. VCG 0094 of F. oxysporum f. sp. radicis-lycopersici, previously known only from northwestern Europe, was predominant among 387 isolates assessed. In addition, two newly described VCGs (0098 and 0099) were detected at low frequencies. Floridian VCG 0094 isolates displayed a continuum of compatibilities, which is in contrast to the three distinct subgroups previously identified among European VCG 0094 isolates. RFLP haplotypes were constructed using one repetitive and three low-copy probes. Population subdivision of VCG 0094 from various Floridian counties and from northwestern Europe (Belgium, the Netherlands, and the United Kingdom) was evaluated by analysis of molecular variance. A “natural” population structure was revealed, differentiating populations from the east and west coasts of Florida. In addition, isolates from Europe were statistically indistinguishable from the Palm Beach County, FL, population. Furthermore, gene diversity among Palm Beach County VCG 0094 isolates was more than five times greater than among European isolates. Results from both VCG and RFLP analyses strongly support the inference that the European VCG 0094 constitutes a founder population that resulted from intercontinental migration of a few isolates from Palm Beach County, FL.


Sign in / Sign up

Export Citation Format

Share Document