Turgor Pressure of Bacterial Cells

2001 ◽  
pp. 135-160 ◽  
Author(s):  
Arthur L. Koch
2021 ◽  
Author(s):  
Alexis J Apostolos ◽  
Noel J Ferraro ◽  
Brianna E Dalesandro ◽  
Marcos Pires

Bacterial cell walls are formidable barriers that protect bacterial cells against external insults and oppose internal turgor pressure. While cell wall composition is variable across species, peptidoglycan is the principal component of all cell walls. Peptidoglycan is a mesh-like scaffold composed of crosslinked strands that can be heavily decorated with anchored proteins. The biosynthesis and remodeling of peptidoglycan must be tightly regulated by cells because disruption to this biomacromolecule is lethal. This essentiality is exploited by the human innate immune system in resisting colonization and by a number of clinically relevant antibiotics that target peptidoglycan biosynthesis. Evaluation of molecules or proteins that interact with peptidoglycan can be a complicated and, typically, qualitative effort. We have developed a novel assay platform (SaccuFlow) that preserves the native structure of bacterial peptidoglycan and is compatible with high-throughput flow cytometry analysis. We show that the assay is facile and versatile as demonstrated by its compatibility with sacculi from Gram-positive bacteria, Gram-negative bacteria, and mycobacteria. Finally, we highlight the utility of this assay to assess the activity of sortase from Staphylococcus aureus against potential anti-virulence agents.


2017 ◽  
Vol 70 (2) ◽  
pp. 130 ◽  
Author(s):  
Anna Mularski ◽  
Frances Separovic

Antimicrobial peptides (AMPs) are promising therapeutic alternatives to conventional antibiotics. Many AMPs are membrane-active but their mode of action in killing bacteria or in inhibiting their growth remains elusive. Recent studies indicate the mechanism of action depends on peptide structure and lipid components of the bacterial cell membrane. Owing to the complexity of working with living cells, most of these studies have been conducted with synthetic membrane systems, which neglect the possible role of bacterial surface structures in these interactions. In recent years, atomic force microscopy has been utilized to study a diverse range of biological systems under non-destructive, physiologically relevant conditions that yield in situ biophysical measurements of living cells. This approach has been applied to the study of AMP interaction with bacterial cells, generating data that describe how the peptides modulate various biophysical behaviours of individual bacteria, including the turgor pressure, cell wall elasticity, bacterial capsule thickness, and organization of bacterial adhesins.


2020 ◽  
Vol 202 (15) ◽  
Author(s):  
Alice Chateau ◽  
So Young Oh ◽  
Anastasia Tomatsidou ◽  
Inka Brockhausen ◽  
Olaf Schneewind ◽  
...  

ABSTRACT Bacillus anthracis, the causative agent of anthrax disease, elaborates a secondary cell wall polysaccharide (SCWP) that is required for the retention of surface layer (S-layer) and S-layer homology (SLH) domain proteins. Genetic disruption of the SCWP biosynthetic pathway impairs growth and cell division. B. anthracis SCWP is comprised of trisaccharide repeats composed of one ManNAc and two GlcNAc residues with O-3–α-Gal and O-4–β-Gal substitutions. UDP-Gal, synthesized by GalE1, is the substrate of galactosyltransferases that modify the SCWP repeat. Here, we show that the gtsE gene, which encodes a predicted glycosyltransferase with a GT-A fold, is required for O-4–β-Gal modification of trisaccharide repeats. We identify a DXD motif critical for GtsE activity. Three distinct genes, gtsA, gtsB, and gtsC, are required for O-3–α-Gal modification of trisaccharide repeats. Based on the similarity with other three-component glycosyltransferase systems, we propose that GtsA transfers Gal from cytosolic UDP-Gal to undecaprenyl phosphate (C55-P), GtsB flips the C55-P-Gal intermediate to the trans side of the membrane, and GtsC transfers Gal onto trisaccharide repeats. The deletion of galE1 does not affect growth in vitro, suggesting that galactosyl modifications are dispensable for the function of SCWP. The deletion of gtsA, gtsB, or gtsC leads to a loss of viability, yet gtsA and gtsC can be deleted in strains lacking galE1 or gtsE. We propose that the loss of viability is caused by the accumulation of undecaprenol-bound precursors and present an updated model for SCWP assembly in B. anthracis to account for the galactosylation of repeat units. IMPORTANCE Peptidoglycan is a conserved extracellular macromolecule that protects bacterial cells from turgor pressure. Peptidoglycan of Gram-positive bacteria serves as a scaffold for the attachment of polymers that provide defined bacterial interactions with their environment. One such polymer, B. anthracis SCWP, is pyruvylated at its distal end to serve as a receptor for secreted proteins bearing the S-layer homology domain. Repeat units of SCWP carry three galactoses in B. anthracis. Glycosylation is a recurring theme in nature and often represents a means to mask or alter conserved molecular signatures from intruders such as bacteriophages. Several glycosyltransferase families have been described based on bioinformatics prediction, but few have been studied. Here, we describe the glycosyltransferases that mediate the galactosylation of B. anthracis SCWP.


Soft Matter ◽  
2021 ◽  
Author(s):  
Huanxin Zhang ◽  
Huabin Wang ◽  
Jonathan J. Wilksch ◽  
Richard A. Strugnell ◽  
Michelle L. Gee ◽  
...  

Explicit expressions are established to extract the turgor pressure and envelope's elastic modulus of a live bacterium from AFM nanoindentation curves. It is found that the two parameters change significantly in different external osmotic conditions.


Author(s):  
R. H. Liss

Piperacillip (PIP) is b-[D(-)-α-(4-ethy1-2,3-dioxo-l-piperzinylcar-bonylamino)-α-phenylacetamido]-penicillanate. The broad spectrum semisynthetic β-lactam antibiotic is believed to effect bactericidal activity through its affinity for penicillin-binding proteins (PBPs), enzymes on the bacterial cytoplasmic membrane that control elongation and septation during cell growth and division. The purpose of this study was to correlate penetration and binding of 14C-PIP in bacterial cells with drug-induced lethal changes assessed by microscopic, microbiologic and biochemical methods.The bacteria used were clinical isolates of Escherichia coli and Pseudomonas aeruginosa (Figure 1). Sensitivity to the drug was determined by serial tube dilution in Trypticase Soy Broth (BBL) at an inoculum of 104 organisms/ml; the minimum inhibitory concentration of piperacillin for both bacteria was 1 μg/ml. To assess drug binding to PBPs, the bacteria were incubated with 14C-PIP (5 μg/0.09 μCi/ml); controls, in drug-free medium.


Author(s):  
J. E. Laffoon ◽  
R. L. Anderson ◽  
J. C. Keller ◽  
C. D. Wu-Yuan

Titanium (Ti) dental implants have been used widely for many years. Long term implant failures are related, in part, to the development of peri-implantitis frequently associated with bacteria. Bacterial adherence and colonization have been considered a key factor in the pathogenesis of many biomaterial based infections. Without the initial attachment of oral bacteria to Ti-implant surfaces, subsequent polymicrobial accumulation and colonization leading to peri-implant disease cannot occur. The overall goal of this study is to examine the implant-oral bacterial interfaces and gain a greater understanding of their attachment characteristics and mechanisms. Since the detailed cell surface ultrastructure involved in attachment is only discernible at the electron microscopy level, the study is complicated by the technical problem of obtaining titanium implant and attached bacterial cells in the same ultra-thin sections. In this study, a technique was developed to facilitate the study of Ti implant-bacteria interface.Discs of polymerized Spurr’s resin (12 mm x 5 mm) were formed to a thickness of approximately 3 mm using an EM block holder (Fig. 1). Titanium was then deposited by vacuum deposition to a film thickness of 300Å (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document