Biosynthesis of an Acetylenic Fatty Acid in Microsomal Preparations from Developing Seeds of Crepis Alpina

Author(s):  
A. Banas ◽  
M. Bafor ◽  
E. Wiberg ◽  
M. Lenman ◽  
U. Ståhl ◽  
...  
2012 ◽  
Vol 84 (9) ◽  
pp. 1867-1875 ◽  
Author(s):  
Néstor M. Carballeira ◽  
Michelle Cartagena ◽  
Fengyu Li ◽  
Zhongfang Chen ◽  
Christopher F. Prada ◽  
...  

The fatty acids (±)-2-methoxy-6Z-heptadecenoic acid, (±)-2-methoxy-6-hepta-decynoic acid, and (±)-2-methoxyheptadecanoic acid were synthesized and their inhibitory activity against the Leishmania DNA topoisomerase IB enzyme (LdTopIB) determined. Both 2-OMe-17:1 fatty acids were synthesized from 4-bromo-1-pentanol, the olefinic fatty acid in 10 steps and in 7 % overall yield, while the acetylenic fatty acid in 7 steps and in 14 % overall yield. The 2-OMe-17:0 acid was prepared in 6 steps and in 42 % yield from 1-hexa-decanol. The 2-OMe-17:1 acids inhibited LdTopIB, with the acetylenic acid displaying an EC50 = 16.6 ± 1.1 μM, but the 2-OMe-17:0 acid did not inhibit LdTopIB. The (±)-2-methoxy-6Z-heptadecenoic acid preferentially inhibited LdTopIB over the human TopIB enzyme. Unsaturation seems to be a prerequisite for effective inhibition, rationalized in terms of weak intermolecular interactions between the active site of LdTopIB and either the double or triple bonds of the fatty acids. Toxicity toward Leishmania donovani promastigotes was also investigated, resulting in the order acetylenic > olefinic > saturated with the (±)-2-methoxy-6-heptadecynoic acid displaying an EC50 = 74.0 ± 17.1 μM. Our results indicate that α-methoxylation decreases the toxicity of C17:1 fatty acids toward L. donovani promastigotes, but improves their selectivity index.


Genome ◽  
2015 ◽  
Vol 58 (8) ◽  
pp. 375-383 ◽  
Author(s):  
Yun Wang ◽  
Xingguo Zhang ◽  
Yongli Zhao ◽  
C.S. Prakash ◽  
Guohao He ◽  
...  

The FAD2 gene family is functionally responsible for the conversion of oleic acid to linoleic acid in oilseed plants. Multiple members of the FAD gene are known to occur in several oilseed species. In this study, six novel full-length cDNA sequences (named as AhFAD2-1, -2, -3, -4, -5, and -6) were identified in peanut (Arachis hypogaea L.), an analysis of which revealed open reading frames of 379, 383, 394, or 442 amino acids. Sequence comparisons showed that AhFAD2-1 and AhFAD2-2 shared 76% identity, while AhFAD2-2, -3, and -4 displayed highly significant homology. There was only 27% identity overlap between the microsomal ω-6 fatty acid desaturase and the chloroplast ω-6 fatty acid desaturase encoded by AhFAD2-1, -2, -3, -4, and AhFAD2-5, -6, respectively. The phylogeny tree of FAD2 transcripts showed five major groups, and AhFAD2-1 was clearly separated from other groups. Analysis of AhFAD2-1 and AhFAD2-2 transcript distribution in different peanut tissues showed that the AhFAD2-1 gene showed upward of a 70-fold increase in expression of fatty acid than the AhFAD2-2 gene in peanut developing seeds, while the AhFAD2-2 gene expressed most abundantly in peanut flowers. Because the AhFAD2-1 gene played a major role in the conversion of oleic to linoleic acid during seed development, the identification of this novel member in this study would facilitate the further genetic manipulation of peanut oil quality. The implications of overall results also suggest that there may be more candidate genes controlling levels of oleate acid in developing seeds. Results also may be due to the presence of complex gene networks controlling the fluxes between the endoplasmic reticulum and the chloroplast within the peanut cells.


2008 ◽  
Vol 85 (4) ◽  
pp. 353-356 ◽  
Author(s):  
J.-F. Butaud ◽  
P. Raharivelomanana ◽  
J.-P. Bianchini ◽  
E. M. Gaydou

1984 ◽  
Vol 40 (3) ◽  
pp. 256-257 ◽  
Author(s):  
G. Frenguelli ◽  
B. Romano ◽  
F. Ferranti ◽  
E. Ciriciofolo

2001 ◽  
Vol 120 (5) ◽  
pp. 417-423 ◽  
Author(s):  
G. Ishikawa ◽  
H. Hasegawa ◽  
Y. Takagi ◽  
T. Tanisaka

Sign in / Sign up

Export Citation Format

Share Document