Damage Tolerant Composite Joint Design

Author(s):  
C. C. Chamis ◽  
L. Minnetyan
2018 ◽  
Vol 22 (6) ◽  
pp. 1983-2008 ◽  
Author(s):  
Scott M Tomlinson ◽  
Roberto A Lopez-Anido

In this article, scale and manufacturing effects on the tensile strength of marine grade sandwich composite panels and joints are investigated to aid in the fabrication of large modular ship hulls. This is done by researching transverse sandwich composite joint design, experimental tension methods, and scale and manufacturing effects on tensile strength. Three scales are utilized in this investigation of tension characteristics: coupon scale, table-top single panel fabrication scale, and in position mock-up full-size fabrication scale. First, material properties are gathered through industry standard coupon scale fabrication and testing. Next, a single-infusion baseline panel along with two ship hull transverse joint designs are chosen, fabricated, tested, and compared at single panel scale. These tests include individually fabricated hull panels, as well as secondary structural stiffener sandwich composite web panels, and stiffener flange components. The highest performing joint design is then utilized in a mock-up full-size fabrication scale structure. This structure includes both a transverse hull joint, as well as joints in the secondary structural stiffener web and flange. This mock-up fabrication scale component was then cut apart and tested in tension. The novel sandwich composite panel joint tension experimentation methods used indicate the methods studied are reliable for determination of characteristic tensile properties, and that the joints selected are effective. Investigations concerning scale effects comparing baseline fiber failure mode tension results from the coupon scale to the single panel scale, and manufacturing effects comparing joint interlaminar shear failure mode from the single panel scale to the mock-up fabrication scale, show decreased ultimate tensile strength with increased overall part size and manufacturing complexity. These factors, applied to a reference strength to achieve a nominal strength, were found to range from 0.796 to 0.846.


2012 ◽  
Vol E95-B (1) ◽  
pp. 333-336 ◽  
Author(s):  
Seungwon CHOI ◽  
Jung-Hyun PARK ◽  
Seokkwon KIM ◽  
Dong-Jo PARK

2003 ◽  
Author(s):  
C. T. Sun ◽  
K. J. Bowman ◽  
J. F. Doyle ◽  
H. Espinosa ◽  
K. P. Trumble

2004 ◽  
Vol 37 (2) ◽  
pp. 39 ◽  
Author(s):  
N. R. Edkie ◽  
R. S. Solanki
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 875
Author(s):  
Hao Tian ◽  
Jianchao He ◽  
Jinbao Hou ◽  
Yanlong Lv

TiB crystal whiskers (TiBw) can be synthesized in situ in Ti alloy matrix through powder metallurgy for the preparation of a new type of ceramic fiber-reinforced Ti matrix composite (TMC) TiBw/Ti-6Al-4V. In the TiBw/Ti-6Al-4V TMC, the reinforced phase/matrix interface is clean and has superior comprehensive mechanical properties, but its machinability is degraded. Hence, the bonding of reliable materials is important. To further optimize the TiBw/Ti-6Al-4V brazing technology and determine the relationship between the microstructure and tensile property of the brazed joint, results demonstrate that the elements of brazing filler metal are under sufficient and uniform diffusion, the microstructure is the typical Widmanstätten structure, and fine granular compounds in β phase are observed. The average tensile strength of the brazing specimen is 998 MPa under room temperature, which is 97.3% of that of the base metal. During the high-temperature (400 °C) tensile process, a fracture occurred at the base metal of the highest tensile test specimen with strength reaching 689 MPa, and the tensile fracture involved a combination of intergranular and transgranular modes at both room temperature and 400 °C. The fracture surface has dimples, secondary cracks are generated by the fracture of TiB whiskers, and large holes form when whole TiB whiskers are removed. The proposed algorithm provides evidence for promoting the application of TiBw/Ti-6Al-4V TMCs in practical production.


Sign in / Sign up

Export Citation Format

Share Document