scholarly journals Eastern Pacific Coral Reef Provinces, Coral Community Structure and Composition: An Overview

Author(s):  
Peter W. Glynn ◽  
Juan J. Alvarado ◽  
Stuart Banks ◽  
Jorge Cortés ◽  
Joshua S. Feingold ◽  
...  
2019 ◽  
Author(s):  
Luis M. Montilla ◽  
Emy Miyazawa ◽  
Alfredo Ascanio ◽  
María López-Hernández ◽  
Gloria Mariño-Briceño ◽  
...  

ABSTRACTThe characteristics of coral reef sampling and monitoring are highly variable, with numbers of units and sampling effort varying from one study to another. Numerous works have been carried out to determine an appropriate effect size through statistical power, however, always from a univariate perspective. In this work, we used the pseudo multivariate dissimilarity-based standard error (MultSE) approach to assess the precision of sampling scleractinian coral assemblages in reefs of Venezuela between 2017 and 2018 when using different combinations of number of transects, quadrats and points. For this, the MultSE of 36 sites previously sampled was estimated, using four 30m-transects with 15 photo-quadrats each and 25 random points per quadrat. We obtained that the MultSE was highly variable between sites and is not correlated with the univariate standard error nor with the richness of species. Then, a subset of sites was re-annotated using 100 uniformly distributed points, which allowed the simulation of different numbers of transects per site, quadrats per transect and points per quadrat using resampling techniques. The magnitude of the MultSE stabilized by adding more transects, however, adding more quadrats or points does not improve the estimate. For this case study, the error was reduced by half when using 10 transects, 10 quadrats per transect and 25 points per quadrat. We recommend the use of MultSE in reef monitoring programs, in particular when conducting pilot surveys to optimize the estimation of the community structure.


2021 ◽  
Vol 8 ◽  
Author(s):  
Graham Kolodziej ◽  
Michael S. Studivan ◽  
Arthur C. R. Gleason ◽  
Chris Langdon ◽  
Ian C. Enochs ◽  
...  

Since the appearance of stony coral tissue loss disease (SCTLD) on reefs off Miami in 2014, this unprecedented outbreak has spread across the entirety of Florida’s coral reef tract, as well as to many territories throughout the Caribbean. The endemic zone reached the upper Florida Keys by 2016, resulting in partial or complete mortality of coral colonies across numerous species. Disease was first observed at Cheeca Rocks (Islamorada, Florida) in the beginning of 2018, with reports of coral mortality peaking mid-year. The disease was still present at Cheeca Rocks as of March 2020, however, to a lesser degree compared to the initial outbreak. Annual monitoring efforts have been ongoing at Cheeca Rocks since 2012, including repeated benthic photomosaics of a 330 m2 survey zone, spanning six replicate sites. As such, a repository of coral community composition data exists for before and after the disease outbreak that was analyzed to assess the impacts of SCTLD on reef communities at an upper Florida Keys inshore reef. Cheeca Rocks is hypothesized to be a resilient reef due to its persistent high coral cover despite its inshore location, which subjects corals to fluctuating water quality and marginal environmental conditions. Coral populations here have been shown to recover from bleaching events and heat stress with minimal coral mortality. Though colonies of coral species characterized as highly and moderately susceptible to SCTLD (e.g., Colpophyllia natans, Diploria labyrinthiformis, Pseudodiploria strigosa, Orbicella annularis, and O. faveolata) suffered mortality as a result of the outbreak with an average loss of 16.42% relative cover by species, the overall impacts on coral cover and community structure were relatively low, contributing to a loss of total coral cover of only 1.65%. Comparison of photomosaic data to other studies indicate Cheeca Rocks may not have been affected as severely as other sites on Florida’s coral reef tract, underlying this site’s potential role in coral resilience to stressors including bleaching events, land-based pollution, and disease epizootics.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xinming Lei ◽  
Hao Cheng ◽  
Yong Luo ◽  
Yuyang Zhang ◽  
Lei Jiang ◽  
...  

Microplastics (MPs) contamination is widespread in the coral reef ecosystems leading to the exposure of both corals and other biotas. Knowledge gaps still exist concerning patterns in MPs abundance spatially. This work quantified the MPs abundance and characteristics in the seawater and corals in the Sanya Bay, Hainan Island. MPs abundance was detected in the seawater and coral samples ranging from 15.50 to 22.14 items L–1, and 0.01 to 3.60 items polyp–1, respectively. We found the predominant size and type of MPs in seawater and corals were smaller than 2 mm and fiber. Further analysis revealed that the characteristics of MPs in the corals were significantly different from those in the seawater environment, indicating that the MPs are selectively enriched in corals. Furthermore, the MPs particles ingested and retained in coral tissue may be related to the polyp size. This study shows that MPs are present in the whole coral reef region and the coral community structure would be potentially harmed by these contaminants.


2019 ◽  
Author(s):  
Aaron O’Dea ◽  
Mauro Lepore ◽  
Andrew H. Altieri ◽  
Melisa Chan ◽  
Jorge Manuel Morales-Saldaña ◽  
...  

AbstractThere is a consensus that Caribbean coral reefs are a pale shadow of what they once were, yet a reef’s pre-human state is typically assumed or estimated using space-for-time substitution approaches. These approaches may fail to account for past variation before human impact which could mislead conservation priorities and actions. In this study we use a suite of fossilised mid-Holocene (7.2-5.6 ka) fringing reefs in Caribbean Panama to define the Historical Range of Variation (HRV) in coral community structure before human-impact to provide context for the states of modern reefs in the same area. Using the abundances of coral taxa to quantify communities, we found that most of the modern coral communities exist in novel ecosystem states with no fossil precedence. We do however identify one modern reef that is indistinguishable in coral community structure from the mid-Holocene reefs. Reef-matrix cores show that the community on this reef has remained in a stable state for over 760 years, suggesting long-term resistance to the region-wide shift to novel states. Without historical context this robust and stable reef would be overlooked since it does not fulfil expectations of what a “pristine” coral reef should look like. This example illustrates how defining past variation using the fossil record can place modern degradation in historical context and improve conservation recommendations.


Sign in / Sign up

Export Citation Format

Share Document