sanya bay
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 8 ◽  
Author(s):  
Xinming Lei ◽  
Hao Cheng ◽  
Yong Luo ◽  
Yuyang Zhang ◽  
Lei Jiang ◽  
...  

Microplastics (MPs) contamination is widespread in the coral reef ecosystems leading to the exposure of both corals and other biotas. Knowledge gaps still exist concerning patterns in MPs abundance spatially. This work quantified the MPs abundance and characteristics in the seawater and corals in the Sanya Bay, Hainan Island. MPs abundance was detected in the seawater and coral samples ranging from 15.50 to 22.14 items L–1, and 0.01 to 3.60 items polyp–1, respectively. We found the predominant size and type of MPs in seawater and corals were smaller than 2 mm and fiber. Further analysis revealed that the characteristics of MPs in the corals were significantly different from those in the seawater environment, indicating that the MPs are selectively enriched in corals. Furthermore, the MPs particles ingested and retained in coral tissue may be related to the polyp size. This study shows that MPs are present in the whole coral reef region and the coral community structure would be potentially harmed by these contaminants.


2020 ◽  
Vol 8 (12) ◽  
pp. 956
Author(s):  
Lingli Wang ◽  
Minglan Guo ◽  
Tao Li ◽  
Hui Huang ◽  
Sheng Liu ◽  
...  

Information on the in situ diet of juvenile chaetognaths is critical for understanding the population recruitment of chaetognaths and their functional roles in marine food web. In this study, a molecular method based on PCR amplification targeted on 18S rDNA was applied to investigate the diet composition of juvenile Flaccisagitta enflata collected in summer and autumn in Sanya Bay, China. Diverse diet species were detected in the gut contents of juvenile F. enflata, including copepods, small jellyfish, anthozoa, polychaetes, echinoderms, diatoms and dinoflagellates. The diet composition showed obvious differences between summer and autumn. Copepod, such as Temora turbinata, Canthocalanus pauper and Subeucalanus crassus, dominated the diet in summer, representing up to 61% of the total prey items. However, small jellyfish, mainly consisting of Bougainvillia fulva, Solmissus marshalli and Pleurobrachia globosa, was the main food group (72.9%) in autumn. Environmental parameters showed no significant difference between summer and autumn. The mean abundance of juvenile chaetognaths in autumn was about eight times higher than that in summer, while the abundance of potential food prey was similar in both seasons. Our results suggested that juveniles chaetognaths might consume small jellyfish as a supplementary food source under enhanced feeding competition in autumn.


2020 ◽  
Vol 12 (17) ◽  
pp. 2765
Author(s):  
Yan Yu ◽  
Shengbo Chen ◽  
Wenhan Qin ◽  
Tianqi Lu ◽  
Jian Li ◽  
...  

Chlorophyll-a (Chl-a) concentration retrieval is essential for water quality monitoring, aquaculture, and guiding coastline infrastructure construction. Compared with common ocean color satellites, land observation satellites have the advantage of a higher resolution and more data sources for retrieving the concentration of Chl-a from optically shallow waters. However, the sun glint (Rsg), bottom reflectance (Rb), and non-algal particle (NAP) derived from terrigenous matter affect the accuracy of Chl-a concentration retrieval using land observation satellite image data. In this paper, we propose a semi-empirical algorithm based on the remote sensing reflectance (Rrs) of SPOT6 to retrieve the Chl-a concentration in Sanya Bay (SYB), considering the effect of Rsg, Rb, and NAP. In this semi-empirical algorithm, the Cox–Munk anisotropic model and radiative transfer model (RTM) were used to reduce the effects of Rsg and Rb on Rrs, and the Chl-a concentration was retrieved by the Chl-a absorption coefficient at 490 nm (aphy(490)) to remove the effect of NAP. The semi-empirical algorithm was in the form of Chl-a = 43.3[aphy(490)]1.454, where aphy (490) was calculated by the total absorption coefficient and the absorption coefficients of each component by empirical algorithms. The results of the Chl-a concentration retrieval show the following: (1) SPOT6 data are available for Chl-a retrieval using this semi-empirical algorithm in oligotrophic or mesotrophic coastal waters, and the accuracy of the algorithm can be improved by removing the effects of Rsg, Rb, and NAP (R2 from 0.71 to 0.93 and root mean square error (RMSE) from 0.23 to 0.11 ug/L); (2) empirical algorithms based on the blue-green band are suitable for oligotrophic or mesotrophic coastal waters, and the algorithm based on the blue-green band difference Chl-a index (DCI) has stronger anti-interference in terms of the effects of sun glint and bottom reflectance than the algorithm based on the blue-green ratio (BGr); (3) in the case of ignoring Rsg unrelated to inherent optical properties (IOPs), NAP is the biggest interference factor when >9.5 mg/L and the effect of bottom reflectance should be considered when the water depth (H) <5 m in SYB; and (4) the inherent optical properties of the waters in SYB are dominated by NAP (Chl-a = 0.2–2.6 ug/L and NAP = 2.2–30.1 mg/L), and the nutrients are concentrated by enclosed terrain and southeast current. This semi-empirical algorithm for Chl-a concentration retrieval has the potential to monitor Chl-a in oligotrophic and mesotrophic coastal waters using other land observation satellites (e.g., Landsat8 OLI, ASTER, and GaoFen2).


2019 ◽  
Vol 7 (4) ◽  
pp. 93
Author(s):  
Eduard A. Titlyanov ◽  
Tamara V. Titlyanova ◽  
Hui Huang ◽  
Anna V. Scriptsova ◽  
Huili Xu ◽  
...  

At the end of the rainy season in 2016 and at the end of the dry season in 2017, we conducted a floristic study of marine macrophytic algae in the intertidal and subtidal zones in moderately and heavily polluted areas at Luhuitou reef, Sanya Bay, Hainan Island, China. A total of 109 species of marine macrophytes were found during these samplings. At the end of the rainy season, 72 species of macrophytes (50% reds, 19% browns, and 31% greens) were found. At the end of the dry season, we found and identified 92 species of macrophytes (46% reds, 20% browns, and 34% greens). Seasonal changes in species diversity, species composition, and the structure of algal communities at differently polluted sites exhibited common features as well as specific characteristics. By the end of the dry season, the diversity of macroalgal species was increased, and the composition of dominant and accompanying species of macrophytes in polydominant communities was changed in moderately and heavily polluted areas. Seasonal changes in the marine flora of differently polluted areas were characterized by specific features as follows: Less changes in species diversity of heavily polluted area compared with moderately polluted area during the change from the rainy season to the dry season; significant increase in the biomass of green algae and their projective coverage in the middle and low intertidal zones of heavily polluted sites in the dry season; and the increase in the numbers of mono- and bidominant communities in the middle and low intertidal zones of heavily polluted sites by the end of the dry season.


2018 ◽  
Vol 26 (22) ◽  
pp. 29134 ◽  
Author(s):  
Hang Liu ◽  
Peng Chen ◽  
Zhihua Mao ◽  
Delu Pan ◽  
Yan He

2018 ◽  
Vol 84 (16) ◽  
Author(s):  
Yingting Sun ◽  
Si Zhang ◽  
Lijuan Long ◽  
Junde Dong ◽  
Feng Chen ◽  
...  

ABSTRACTPicocyanobacteriaProchlorococcusandSynechococcusare abundant in the global oceans and subject to active viral infection. In this study, the genetic diversity of picocyanobacteria and the genetic diversity of cyanopodoviruses were synchronously investigated along water columns in the equatorial Indian Ocean and over a seasonal time course in the coastal Sanya Bay, South China Sea. Using the 16S-23S rRNA internal transcribed spacer (ITS)-based clone library and quantitative PCR (qPCR) analyses, the picocyanobacterial community composition and abundance were determined. Sanya Bay was dominated by clade IISynechococcusduring all the seasons, and a typical population shift from high-light-adaptedProchlorococcusto low-light-adaptedProchlorococcuswas found along the vertical profiles. Strikingly, the DNA polymerase gene sequences of cyanopodoviruses revealed a much greater genetic diversity than we expected. Nearly one-third of the phylogenetic groups were newly described here. No apparent seasonal pattern was observed for the Sanya Bay picocyanobacterial or cyanopodoviral communities. Different dominant cyanopodovirus lineages were identified for the coastal area, upper euphotic zone, and middle-to-lower euphotic zone of the open ocean. Diversity indices of both picocyanobacteria and cyanopodoviruses were highest in the middle euphotic zone and both were lower in the upper euphotic zone, reflecting a host-virus interaction. Cyanopodoviral communities differed significantly between the upper euphotic zone and the middle-to-lower euphotic zone, showing a vertical pattern similar to that of picocyanobacteria. However, in the surface waters of the open ocean, cyanopodoviruses exhibited no apparent biogeographic pattern, differing from picocyanobacteria. This study demonstrates correlated distribution patterns of picocyanobacteria and cyanopodoviruses, as well as the complex biogeography of cyanopodoviruses.IMPORTANCEPicocyanobacteria are highly diverse and abundant in the ocean and display remarkable global biogeography and a vertical distribution pattern. However, how the diversity and distribution of picocyanobacteria affect those of the viruses that infect them remains largely unknown. Here we synchronously analyzed the community structures of cyanopodoviruses and picocyanobacteria at spatial and temporal scales. Both spatial and temporal variations of cyanopodoviral communities can be linked to those of picocyanobacteria. The coastal area, upper euphotic zone, and middle-to-lower euphotic zone of the open ocean have distinct cyanopodoviral communities, showing horizontal and vertical variation patterns closely related to those of picocyanobacteria. These findings emphasize the driving force of host community in shaping the biogeographic structure of viruses. Our work provides important information for future assessments of the ecological roles of viruses and hosts for each other.


2018 ◽  
Vol 10 (2) ◽  
pp. 380 ◽  
Author(s):  
Guizhi Wang ◽  
Shuling Wang ◽  
Zhangyong Wang ◽  
Wenping Jing

ScienceAsia ◽  
2018 ◽  
Vol 44 (4) ◽  
pp. 241
Author(s):  
Anqi Yin ◽  
Xinghua Wang ◽  
Yajian Zhang ◽  
Hongwu Li

Sign in / Sign up

Export Citation Format

Share Document