Particle Radiation Sources, Propagation and Interactions in Deep Space, at Earth, the Moon, Mars, and Beyond: Examples of Radiation Interactions and Effects

Author(s):  
Nathan A. Schwadron ◽  
John F. Cooper ◽  
Mihir Desai ◽  
Cooper Downs ◽  
Matt Gorby ◽  
...  
2017 ◽  
Vol 212 (3-4) ◽  
pp. 1069-1106 ◽  
Author(s):  
Nathan A. Schwadron ◽  
John F. Cooper ◽  
Mihir Desai ◽  
Cooper Downs ◽  
Matt Gorby ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. 3-11
Author(s):  
Lu Li ◽  
Yu Qing-Long ◽  
Zhou Ping ◽  
Zhang Xin ◽  
Zhang Xian-Guo ◽  
...  

Since the moon’s revolution cycle is exactly the same as its rotation cycle, we can only see the moon always facing Earth in the same direction. Based on the clean particle radiation environment of the moon, a neutral atomic telemetry base station could be established on the lunar surface facing Earth to realize long-term continuous geomagnetic activity monitoring. Using the 20°×20° field of view, the 0.5°×0.5° angle resolution, and the ~0.17 cm²sr geometric factor, a two-dimensional ENA imager is being designed. The magnetospheric ring current simulation at a 4–20 keV energy channel for a medium geomagnetic storm (Kp=5) shows the following: 1) at ~60 Rᴇ (Rᴇ is the Earth radius), the imager can collect 10⁴ ENA events for 3 min to meet the statistical requirements for 2D coded imaging data inversion, so as to meet requirements for the analysis of the substorm ring current evolution process of magnetic storms above medium; 2) the ENA radiation loss puzzles in the magnetopause and magnetotail plasma sheet regions have been deduced and revealed using the 2-D ENA emission model. High spatial-temporal resolution ENA imaging monitoring of these two important regions will provide the measurement basis for the solar wind energy input process and generation mechanism; 3) the average sampling interval of ENA particle events is about 16 ms at the moon’s orbit; the spectral time difference for the set energy range is on the order of minutes, which can provide location information to track the trigger of geomagnetic storm particle events.


Studia Humana ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 24-30
Author(s):  
Konrad Szocik ◽  
Bartłomiej Tkacz

Abstract Yuri Gagarin has started the first time in human history the manned mission in space when his Vostok aircraft successfully achieved Earth orbit in 1961. Since his times, human space programs did not develop too much, and the biggest achievement still remain landing on the Moon. Despite this stagnation, there are serious plans to launch manned mission to Mars including human space settlement. In out paper, we are going to identify and discuss a couple of challenges that – in our opinion – will be a domain of every human deep-space program.


2016 ◽  
Vol 9 (8) ◽  
pp. 3467-3475 ◽  
Author(s):  
Martin Burgdorf ◽  
Stefan A. Buehler ◽  
Theresa Lang ◽  
Simon Michel ◽  
Imke Hans

Abstract. Instruments on satellites for Earth observation on polar orbits usually employ a two-point calibration technique, in which deep space and an onboard calibration target provide two reference flux levels. As the direction of the deep-space view is in general close to the celestial equator, the Moon sometimes moves through the field of view and introduces an unwelcome additional signal. One can take advantage of this intrusion, however, by using the Moon as a third flux standard, and this has actually been done for checking the lifetime stability of sensors operating at visible wavelengths. As the disk-integrated thermal emission of the Moon is less well known than its reflected sunlight, this concept can in the microwave range only be used for stability checks and intercalibration. An estimate of the frequency of appearances of the Moon in the deep-space view, a description of the limiting factors of the measurement accuracy and models of the Moon's brightness, and a discussion of the benefits from complementing the naturally occurring appearances of the Moon with dedicated spacecraft maneuvers show that it would be possible to detect photometric lifetime drifts of a few percent with just two measurements. The pointing accuracy is the most crucial factor for the value of this method. Planning such observations in advance would be particularly beneficial, because it allows observing the Moon at well-defined phase angles and putting it at the center of the field of view. A constant phase angle eliminates the need for a model of the Moon's brightness when checking the stability of an instrument. With increasing spatial resolution of future microwave sensors another question arises, viz. to what extent foreground emission from objects other than the Moon will contaminate the flux entering the deep-space view, which is supposed to originate exclusively in the cosmic microwave background. We conclude that even the brightest discreet sources have flux densities below the detection limit of microwave sensors in a single scan.


2018 ◽  
Vol 11 (7) ◽  
pp. 4005-4014 ◽  
Author(s):  
Martin Burgdorf ◽  
Imke Hans ◽  
Marc Prange ◽  
Theresa Lang ◽  
Stefan A. Buehler

Abstract. We analyzed intrusions of the Moon in the deep space view of the Advanced Microwave Sounding Unit-B on the NOAA-16 satellite and found no significant discrepancies in the signals from the different sounding channels between 2001 and 2008. However, earlier investigations had detected biases of up to 10 K, by using simultaneous nadir overpasses of NOAA-16 with other satellites. These discrepancies in the observations of Earth scenes cannot be due to non-linearity of the receiver or contamination of the deep space view without affecting the signal from the Moon as well. As neither major anomalies of the on-board calibration target nor the local oscillator were present, we consider radio frequency interference in combination with a strongly decreasing gain the most obvious reason for the degrading photometric stability. By means of the chosen example we demonstrate the usefulness of the Moon for investigations of the performance of microwave sounders in flight.


Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 28 ◽  
Author(s):  
Elizabeth M. Hawkins ◽  
Ada Kanapskyte ◽  
Sergio R. Santa Maria

In light of an upcoming series of missions beyond low Earth orbit (LEO) through NASA’s Artemis program and the potential establishment of bases on the Moon and Mars, the effects of the deep space environment on biology need to be examined and protective countermeasures need to be developed. Even though many biological experiments have been performed in space since the 1960s, most of them have occurred in LEO and for only short periods of time. These LEO missions have studied many biological phenomena in a variety of model organisms, as well as utilized a broad range of technologies. Given the constraints of the deep space environment, however, future deep space biological missions will be limited to microbial organisms using miniaturized technologies. Small satellites like CubeSats are capable of querying relevant space environments using novel instruments and biosensors. CubeSats also provide a low-cost alternative to more complex and larger missions, and require minimal crew support, if any. Several have been deployed in LEO, but the next iteration of biological CubeSats will go farther. BioSentinel will be the first interplanetary CubeSat and the first biological study NASA has sent beyond Earth’s magnetosphere in 50 years. BioSentinel is an autonomous free-flyer platform able to support biology and to investigate the effects of radiation on a model organism in interplanetary deep space. The BioSensor payload contained within the free-flyer is also an adaptable instrument that can perform biologically relevant measurements with different microorganisms and in multiple space environments, including the ISS, lunar gateway, and on the surface of the Moon. Nanosatellites like BioSentinel can be used to study the effects of both reduced gravity and space radiation and can house different organisms or biosensors to answer specific scientific questions. Utilizing these biosensors will allow us to better understand the effects of the space environment on biology so humanity may return safely to deep space and venture farther than ever before.


Author(s):  
Ginger Flores ◽  
Danny Harris ◽  
Rachel McCauley ◽  
Shane Canerday ◽  
Lindsey Ingram ◽  
...  
Keyword(s):  
The Moon ◽  

Space Weather ◽  
2018 ◽  
Vol 16 (3) ◽  
pp. 289-303 ◽  
Author(s):  
N. A. Schwadron ◽  
F. Rahmanifard ◽  
J. Wilson ◽  
A. P. Jordan ◽  
H. E. Spence ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document