scholarly journals Multi-Level Challenges in a Long-Term Human Space Program. The Case of Manned Mission to Mars

Studia Humana ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 24-30
Author(s):  
Konrad Szocik ◽  
Bartłomiej Tkacz

Abstract Yuri Gagarin has started the first time in human history the manned mission in space when his Vostok aircraft successfully achieved Earth orbit in 1961. Since his times, human space programs did not develop too much, and the biggest achievement still remain landing on the Moon. Despite this stagnation, there are serious plans to launch manned mission to Mars including human space settlement. In out paper, we are going to identify and discuss a couple of challenges that – in our opinion – will be a domain of every human deep-space program.

2018 ◽  
Vol 20 (1) ◽  
pp. 3
Author(s):  
Osamu Odawara

Space technology has been developed for frontier exploration not only in low-earth orbit environment but also beyond the earth orbit to the Moon and Mars, where material resources might be strongly restricted and almost impossible to be resupplied from the earth for distant and long-term missions performance toward “long-stays of humans in space”. For performing such long-term space explorations, none would be enough to develop technologies with resources only from the earth; it should be required to utilize resources on other places with different nature of the earth, i.e., in-situ resource utilization. One of important challenges of lunar in-situ resource utilization is thermal control of spacecraft on lunar surface for long-lunar durations. Such thermal control under “long-term field operation” would be solved by “thermal wadis” studied as a part of sustainable researches on overnight survivals such as lunar-night. The resources such as metal oxides that exist on planets or satellites could be refined, and utilized as a supply of heat energy, where combustion synthesis can stand as a hopeful technology for such requirements. The combustion synthesis technology is mainly characterized with generation of high-temperature, spontaneous propagation of reaction, rapid synthesis and high operability under various influences with centrifugal-force, low-gravity and high vacuum. These concepts, technologies and hardware would be applicable to both the Moon and Mars, and these capabilities might achieve the maximum benefits of in-situ resource utilization with the aid of combustion synthesis applications. The present paper mainly concerns the combustion synthesis technologies for sustainable lunar overnight survivals by focusing on “potential precursor synthesis and formation”, “in-situ resource utilization in extreme environments” and “exergy loss minimization with efficient energy conversion”.


2019 ◽  
Vol 6 (6) ◽  
pp. 1274-1278
Author(s):  
Weijie Zhao ◽  
Chi Wang

Abstract The Chinese lunar probe Chang'e-4 (CE-4) landed in the Von Kármán crater within the South Pole–Aitken (SPA) basin on the far-side of the Moon on 3 January 2019. Following this, the moon rover Yutu-2 separated from the CE-4 lander and started its travels and exploration on the far-side of the Moon. Before this landing, humans had remotely observed the far-side of the Moon with lunar satellites. However, it was the first time that a man-made spacecraft had landed there and actually left behind wheel prints belonging to humanity. Since China's Lunar Exploration Project (CLEP), or Chang'e Project, started in 2004, China has accomplished the first two steps of its three-step plan of ‘Orbiting, Landing and Returning’. CE-3 and CE-4 landed successfully on the near-side and far-side of the Moon, respectively. In the near future, CE-5 will land again on the near-side of the Moon and take lunar rock and soil samples back to Earth, thus completing the three-step plan of CLEP. In April 2019, National Science Review (NSR) interviewed three key figures of CLEP: CLEP Chief Engineer Weiren Wu (), the first CLEP Chief Scientist and CLEP senior consultant Ziyuan Ouyang (), and CLEP third phase Vice-Chief Engineer, CE-4 Ground Research and Application System Director Chunlai Li (). They talked about the scientific expectations and future plans of China's lunar and deep space exploration.


2021 ◽  
Author(s):  
Gengxin Xie ◽  
Yuanxun Zhang ◽  
Jing Yang ◽  
Dengyun Yu ◽  
Maozhi Ren ◽  
...  

Abstract Understanding how terrestrial life responds to planet microgravity is essential for humankind’s ambitious solar system exploration. Using the life-regeneration ecosystem carried by Chang’e 4 probe landed on the Moon, for the first time in human history, we followed the life trajectory of an earth cotton seed germination, development, and final fate after long term exposure to super cold temperature. We compared this life trajectory on the moon to that on earth in a controlled environment with matching parameters, except that the gravity is different. We found that 1/6 g Moon gravity causes no significant interruption to seed germination speed, but slows down seedling growth and contributes to an apparently shortened hypocotyl and thinner cotyledon. Most surprisingly, Moon seedling showed expeditious acclimation to super-freezing under 1/6 g microgravity, remaining erect and green after exposure to long term super cold temperature during the lunar night. We propose plausible mechanisms for the cold resilience based on moon-microgravity induced cellular and molecular responses. These unique findings will extend our understanding of plant adaptive responses to space suboptimal environments.


1970 ◽  
Vol 19 (1) ◽  
pp. 89-99
Author(s):  
K. Choudhary ◽  
M. Singh ◽  
M. S. Rathore ◽  
N. S. Shekhawat

This long term study demonstrates for the first time that it is possible to propagate embryogenic Vigna trilobata and to subsequently initiate the differentiation of embryos into complete plantlets. Initiation of callus was possible on 2,4-D. Somatic embryos differentiated on modified MS basal nutrient medium with 1.0 mg/l  of 2,4-D and 0.5 mg/l  of Kn. Sustained cell division resulted in globular and heart shape stages of somatic embryos. Transfer of embryos on to a fresh modified MS basal medium with 0.5 mg/l of Kn and 0.5 mg/l of GA3 helped them to attain maturation and germination. However, the propagation of cells, as well as the differentiation of embryos, were inhibited by a continuous application of these growth regulators. For this reason, a long period on medium lacking these growth regulators was necessary before the differentiation of embryos occurred again. The consequences for improving the propagation of embryogenic cultures in Vigna species are discussed. Key words: Pasture  legume, Vigna trilobata, Globular, Heart shape, somatic embryogenesis D.O.I. 10.3329/ptcb.v19i1.4990 Plant Tissue Cult. & Biotech. 19(1): 89-99, 2009 (June)


2017 ◽  
pp. 34-47
Author(s):  
Hoi Le Quoc ◽  
Nam Pham Xuan ◽  
Tuan Nguyen Anh

The study was targeted at developing a methodology for constructing a macroeconomic performance index at a provincial level for the first time in Vietnam based on 4 groups of measurements: (i) Economic indicators; (ii) oriented economic indicators; (iii) socio-economic indicators; and (iv) economic - social – institutional indicators. Applying the methodology to the 2011 - 2015 empirical data of all provinces in Vietnam, the research shows that the socio-economic development strategy implemented by those provinces did not provide balanced outcomes between growth and social objectives, sustainability and inclusiveness. Many provinces focused on economic growth at the cost of structural change, equality and institutional transformation. In contrast, many provinces were successful in improving equality but not growth. Those facts threaten the long-term development objectives of the provinces.


2005 ◽  
Author(s):  
G. Gaias ◽  
S. Centuori ◽  
M.R. Lavagna ◽  
A Da Costa ◽  
A.E. Finzi
Keyword(s):  

Author(s):  
O. D. Golyaeva ◽  
O. V. Kurashev ◽  
S. D. Knyazev ◽  
А. Yu. Bakhotskaya

The main goal of the scientific institution was and remains to improve the assortment of fruit and berry crops for the development of domestic horticulture. Black currant breeding at VNIISPK was started by A.F Tamarova and continued by the doctor of agricultural Sciences T.P.Ogoltsova and doctor of agricultural Sciences S.D. Knyazev. A long-term breeding program has been developed. The main goals of the program are to create black currant cultivars with continuous resistance to diseases, first of all powdery mildew, as wells resistance to pests, i.e. bud mite. As a result of the long-term work, over 40 black currant cultivars have been developed, 14 of them are zoned. Red currant breeding was led by the candidate of agricultural Sciences L.V. Bayanova; since 2001 the work has been continued by the candidate of agricultural Sciences O.D. Golyaeva. ‘Heinemanns Rote Spӓtlese’, the descendant of R. multiflorum Kit., was involved in the red currant breeding for the first time in Russia. On its genetic basis, a series of late maturing cultivars with long and dense racemes was created. At the Institute, in total 21cultivars of red currants have been developed, 13 of them are zoned. At present, red currant cultivars make up 25.5% of the zoned assortment in Russia. The first research on gooseberries was stated by V.P. Semakin and A.F Tamarova; since 1992 the systematic gooseberry breeding has been carried out by the candidate of agricultural Sciences O.V. Kurashev. On the basis of Grossularia robusta, we have created gooseberry forms that are resistant to powdery mildew and leaf spots. These forms are highly productive, weakly thorned, having bush habit suitable for mechanized harvest. The result of breeding activities was the transfer of 6 gooseberry cultivars to State agricultural testing: ‘Solnechny Zaychik’, ‘Nekrasovsky’, ‘Yupiter’, ‘Zemlianichny’, ‘Moryachok’ and ‘Discovery’.


Author(s):  
Evan Osborne

Does humanity progress primarily through leaders organizing and directing followers, or through trial and error by individuals free to chart their own path? For most of human history ruling classes had the capacity and the desire to tightly regiment society, to the general detriment of progress. But beginning in the 1500s, Europeans developed a series of arguments for simply leaving well enough alone. First in the form of the scientific method, then in the form of free expression, and finally in the form of the continuously, spontaneously reordered free market, people began to accept that progress is hard, and requires that an immense number of mistakes be tolerated so that we may learn from them. This book tells the story of the development of these three ideas, and for the first time tells of the mutual influence among them. It outlines the rise, and dramatic triumph, of each of these self-regulating systems, followed by a surprising rise in skepticism, especially in the economic context. Such skepticism in the 20th century was frequently costly and sometimes catastrophic. Under the right conditions, which are more frequent than generally believed, self-regulating systems in which participants organize themselves are superior. We should accept their turbulence in exchange for the immense progress they generate.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 451
Author(s):  
Marta Kubiak ◽  
Janine Mayer ◽  
Ingo Kampen ◽  
Carsten Schilde ◽  
Rebekka Biedendieck

In biocatalytic processes, the use of free enzymes is often limited due to the lack of long-term stability and reusability. To counteract this, enzymes can be crystallized and then immobilized, generating cross-linked enzyme crystals (CLECs). As mechanical stability and activity of CLECs are crucial, different penicillin G acylases (PGAs) from Gram-positive organisms have proven to be promising candidates for industrial production of new semisynthetic antibiotics, which can be crystallized and cross-linked to characterize the resulting CLECs regarding their mechanical and catalytic properties. The greatest hardness and Young’s modulus determined by indentation with an atomic force microscope were observed for CLECs of Bacillus species FJAT-PGA CLECs (26 MPa/1450 MPa), followed by BmPGA (Priestia megaterium PGA, 23 MPa/1170 MPa) and BtPGA CLECs (Bacillus thermotolerans PGA, 11 MPa/614 MPa). In addition, FJAT- and BtPGA CLECs showed up to 20-fold higher volumetric activities compared to BmPGA CLECs. Correlation to structural characteristics indicated that a high solvent content and low number of cross-linking residues might lead to reduced stability. Furthermore, activity seems to be restricted by small water channels due to severe diffusion limitations. To the best of our knowledge, we show for the first time in this study that the entire process chain for the characterization of diverse industrially relevant enzymes can be performed at the microliter scale to discover the most important relationships and limitations.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
J. N. Chung ◽  
Jun Dong ◽  
Hao Wang ◽  
S. R. Darr ◽  
J. W. Hartwig

AbstractThe extension of human space exploration from a low earth orbit to a high earth orbit, then to Moon, Mars, and possibly asteroids is NASA’s biggest challenge for the new millennium. Integral to this mission is the effective, sufficient, and reliable supply of cryogenic propellant fluids. Therefore, highly energy-efficient thermal-fluid management breakthrough concepts to conserve and minimize the cryogen consumption have become the focus of research and development, especially for the deep space mission to mars. Here we introduce such a concept and demonstrate its feasibility in parabolic flights under a simulated space microgravity condition. We show that by coating the inner surface of a cryogenic propellant transfer pipe with low-thermal conductivity microfilms, the quenching efficiency can be increased up to 176% over that of the traditional bare-surface pipe for the thermal management process of chilling down the transfer pipe. To put this into proper perspective, the much higher efficiency translates into a 65% savings in propellant consumption.


Sign in / Sign up

Export Citation Format

Share Document