The Joint Strength of Timber Connected with Adhesively Bonded-in GFRP Rod

InCIEC 2015 ◽  
2016 ◽  
pp. 847-859
Author(s):  
Zakiah Ahmad ◽  
Reza Andasht Kazeroon
2018 ◽  
Vol 53 (23) ◽  
pp. 3335-3346 ◽  
Author(s):  
Hamid Reza Borghei ◽  
Bashir Behjat ◽  
Mojtaba Yazdani

In this paper, the effect of graphene nanoparticle additive on the strength of simple and hybrid (rivet-bonded) single-lap joints is studied using the experimental method. Two different types of graphene with different number of layer and thicknesses are used in adhesive-graphene nanoparticle composite construction. At first, tensile tests are done on bulk specimens of adhesive with different additives. It is found that adding 0.5 wt% of graphene to the neat adhesive leads to an increase in the ultimate tensile strength of bulk specimens almost 24% and 12% for two graphene types compared to the neat adhesive. Also, the shear strength of adhesive and hybrid lap joints incorporating two types of graphene nanoparticles (types I and II) is compared to that of adhesive and hybrid joints without graphene nanoparticles. SEM results of fracture surfaces show that the inclusion of graphene nanoparticle to the adhesive increases the roughness of surfaces. Experimental results reveal that graphene nanoparticle increases the strength of bonded and hybrid joints. It is observed that, graphene with a lower thickness and number of layers has a better influence on joint strength. In fact, graphene nanoparticle type II makes a homogeneous distribution in adhesive-graphene nanoparticle composite and causes a significant increase on joint strength.


Author(s):  
P Liška ◽  
B Nečasová ◽  
J Šlanhof ◽  
P Schmid ◽  
V Motyčka

Precise adherence to the manufacturer’s instructions and requirements plays an important role in various installation processes. The presented paper deals with the evaluation of the effect of manufacturing imperfections and surface defects on the failure behaviour of flexible adhesive intended for façade application. The failure to comply with the accepted procedures is more common in construction practice than in other sectors of the industry, mostly due to the surrounding conditions and lack of trained supervision. Unfortunately, this may lead to premature failure of adhesively bonded joints and a considerable shortening of the service life of the entire construction. To determine the potential of the risk, five types of artificially applied (a) manufacturing imperfections: (1) application on wet adhesion promoter, (2) application after the expiry of the laying-time, (3) curing of samples at +1℃ (b) surface defects: (4) application on a wet substrate and (5) application on a dirty surface, were suggested. Moreover, the Taguchi L32 orthogonal array design was used to arrange the test setup of all possible combinations. The 1 K polyurethane adhesive was applied in tensile butt joints and single-lap shear joints composed of aluminium alloy and thermally modified wood substrates. The obtained results confirmed that non-observance of the required manufacturing techniques and recommended procedures can have a negative impact on the decrease of the adhesively bonded joint strength and deformation behaviour. Surprisingly, the most critical was not the combination of all suggested types of imperfections and defects. The performed one-way ANOVA revealed that the most perilous was the combination of types 2 and 4 in the tensile test with 77% joint strength reduction. In the shear test, the most critical was the combination of all types of imperfection and defects which led also to a 77% drop of shear strength.


2015 ◽  
Vol 825-826 ◽  
pp. 328-335 ◽  
Author(s):  
Daisy Nestler ◽  
Claudia Döhler ◽  
Bernhard Wielage ◽  
Guntram Wagner

The increasing implementation of fibre-reinforced plastics (FRP) leads to a broad utilization of metal/FRP joints. The examination of adhesively bonded metal/FRP joints is focusing on the maximum joint strength and the surface pretreatment used to promote it. A deeper understanding of the mechanisms behind the correlation is lacking. Along with the chemical condition of the surface (free chemical bonds, polarity, etc.) the surface morphology plays an important role. This study addresses the connection between the surface morphology and joint strength. The investigation of the surface morphology of the metallic joining area and the fractured surface of both joining partners by means of imaging and tactile methods and the results are presented.


2015 ◽  
Vol 2015 (0) ◽  
pp. 28-29
Author(s):  
Tetsushi SANO ◽  
Jyo SHIMURA ◽  
Shigeru KUROSAKI ◽  
Mutsumi MIYAGAWA

2008 ◽  
Vol 84 (11) ◽  
pp. 915-934 ◽  
Author(s):  
E. A. S. Marques ◽  
Lucas F. M. da Silva

2018 ◽  
Vol 68 (3) ◽  
pp. 5-24
Author(s):  
Jamal-Omidi Majid ◽  
Mohammadi Suki Mohammad Reza

AbstractIn this paper, effects of the defect in an adhesively bonded joint have been investigated using cohesive zone modeling. Consequently, a 3D finite element model of a single lap-joint is constructed and validated with experiments. Strength prediction of current model is found desirable. Accordingly, different sizes of square shape defects are imported to model in the form of changing (raised or degraded) material properties (heterogeneity) and locally delaminated areas (as inclusion/void), respectively. Joint strength is investigated and a stress analysis is carried out for adhesive layer and adherends. Obtained Results show that, defect has significant impact on the results. It is found that at constant size of defect, local delamination has more impact on bonded joint strength than the heterogeneity. Furthermore, stress analyses demonstrate that the stress field does not change in adherends by taking defects into account. However, stress values decrease with degraded material properties and joint’s strength. Through evaluation of peel and transverse shear stresses in adhesive layer it is found that there is a change of stress distribution for both types of defects. Whereas, there is a considerable stress concentration in the delaminated adhesive layer.


2010 ◽  
Vol 93-94 ◽  
pp. 562-565
Author(s):  
S.H. Yoon ◽  
B.J. Kim ◽  
K.H. Lee ◽  
D.G. Lee

Recently, a piezoelectric method using piezoelectric characteristics of epoxy adhesives has been successfully developed for the adhesive joints, which can monitor continuously the damage of adhesively bonded structures without producing any defect induced by inserting a sensor. However, due to low piezoelectric properties of epoxy adhesives, the detection of micro crack was impossible. At the cryogenic temperature, the detection of micro crack is important to estimate the fatigue life because the polymeric adhesives become very brittle. Therefore, in this work, the epoxy adhesive was modified by quartz nano-particles which have much higher piezoelectric properties than the epoxy adhesives. To investigate the effects of quartz nano-particles, the static and dynamic tests of the tubular adhesive joints were performed to compare the joint strength and sensitivity of damage monitoring performance. From the experiment result, it was found that the quartz nano-particles not only improved the joint strength but also increased the sensitivity of damage monitoring performance at cryogenic temperature.


2015 ◽  
Vol 25 (4) ◽  
pp. 317-327 ◽  
Author(s):  
Tomohiro Yokozeki ◽  
Masaru Ishibashi ◽  
Yayoi Kobayashi ◽  
Hideyasu Shamoto ◽  
Yutaka Iwahori

2014 ◽  
Vol 554 ◽  
pp. 355-359
Author(s):  
Basirom Izzawati ◽  
Mohd Afendi ◽  
M. Afif ◽  
S. Nurhashima ◽  
R. Daud ◽  
...  

The butt joint is the most studied type of adhesive joints in the literature. However, the joint strength prediction of joints is still a controversial issue as it involves a lot of factors that are difficult to quantify such as the yielding of the adherend, the plasticity of the adhesive and the bondline thickness. The present work is concerned with the three dimensional (3D) finite element stress analysis of butt adhesively bonded dissimilar joint. The objective of the present study was to analyse the effect of bond thickness on mechanical strength of butt adhesively bonded dissimilar joint. Aluminum alloy and steel were selected and five thicknesses were studied for each adherend: 0.2, 0.4, 0.6, 0.8, and 1.0 mm respectively. In order to quantify the influence of bondline thickness, adherend and durability of the butt joint, the 3D finite element models of ANSYS used to obtain the stress distributions. Mechanical properties of adhesive were determined by tensile test and ANSYS analysis. A statistical analysis of simulation results shows that the butt joint strength becomes stronger while the bondline gets thinner and adhesive gets tougher.


Sign in / Sign up

Export Citation Format

Share Document