A CFAR Detection Algorithm for X-ray Pulsar Signal Based on Time-Frequency Entropy

Author(s):  
Lu Wang ◽  
Xizheng Ke
Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3524
Author(s):  
Rongru Wan ◽  
Yanqi Huang ◽  
Xiaomei Wu

Ventricular fibrillation (VF) is a type of fatal arrhythmia that can cause sudden death within minutes. The study of a VF detection algorithm has important clinical significance. This study aimed to develop an algorithm for the automatic detection of VF based on the acquisition of cardiac mechanical activity-related signals, namely ballistocardiography (BCG), by non-contact sensors. BCG signals, including VF, sinus rhythm, and motion artifacts, were collected through electric defibrillation experiments in pigs. Through autocorrelation and S transform, the time-frequency graph with obvious information of cardiac rhythmic activity was obtained, and a feature set of 13 elements was constructed for each 7 s segment after statistical analysis and hierarchical clustering. Then, the random forest classifier was used to classify VF and non-VF, and two paradigms of intra-patient and inter-patient were used to evaluate the performance. The results showed that the sensitivity and specificity were 0.965 and 0.958 under 10-fold cross-validation, and they were 0.947 and 0.946 under leave-one-subject-out cross-validation. In conclusion, the proposed algorithm combining feature extraction and machine learning can effectively detect VF in BCG, laying a foundation for the development of long-term self-cardiac monitoring at home and a VF real-time detection and alarm system.


Author(s):  
Dang-Khoa Tran ◽  
Thanh-Hai Nguyen ◽  
Thanh-Nghia Nguyen

In the electroencephalography (EEG) study, eye blinks are a commonly known type of ocular artifact that appears most frequently in any EEG measurement. The artifact can be seen as spiking electrical potentials in which their time-frequency properties are varied across individuals. Their presence can negatively impact various medical or scientific research or be helpful when applying to brain-computer interface applications. Hence, detecting eye-blink signals is beneficial for determining the correlation between the human brain and eye movement in this paper. The paper presents a simple, fast, and automated eye-blink detection algorithm that did not require user training before algorithm execution. EEG signals were smoothed and filtered before eye-blink detection. We conducted experiments with ten volunteers and collected three different eye-blink datasets over three trials using Emotiv EPOC+ headset. The proposed method performed consistently and successfully detected spiking activities of eye blinks with a mean accuracy of over 96%.


2019 ◽  
Vol 69 (3) ◽  
pp. 185-187
Author(s):  
Magnus Fredriksson ◽  
Julie Cool ◽  
Stavros Avramidis

Abstract X-ray computed tomography (CT) scanning of sawmill logs is associated with costly and complex machines. An alternative scanning solution was developed, but its data have not been evaluated regarding detection of internal features. In this exploratory study, a knot detection algorithm was applied to images of four logs to evaluate its performance in terms of knot position and size. The results were a detection rate of 67 percent, accurate position, and inaccurate size. Although the sample size was small, it was concluded that automatic knot detection in coarse resolution CT images of softwoods is feasible, albeit for knots of sufficient size.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Hao Liang ◽  
Yafeng Zhan

The detection of the X-ray pulsar signal is important for the autonomous navigation system using X-ray pulsars. In the condition of short observation time and limited number of photons for detection, the noise does not obey the Gaussian distribution. This fact has been little considered extant. In this paper, the model of the X-ray pulsar signal is rebuilt as the nonhomogeneous Poisson distribution and, in the condition of a fixed false alarm rate, a fast detection algorithm based on maximizing the detection probability is proposed. Simulation results show the effectiveness of the proposed detection algorithm.


The crack can occur in any bone ofour body. Broken bone is a bone condition that endured a breakdown of bone trustworthiness. The Fracture can't recognize effortlessly by the bare eye, so it is found in the x-beam images. The motivation behind this task is to find the precise territory where the bone fracture happens utilizing X-Ray Bone Fracture Detection by Canny Edge Detection Method. Shrewd Edge Detection technique is an ideal edge identification calculation on deciding the finish of a line with alterable limit and less error rate. The reproduction results have indicated how canny edge detection can help decide area of breaks in x-beam images. In the base paper, the cracked bit is chosen physically to defeat this downside, the proposed technique identify the bone fracture consequently and furthermore it quantifies the parameter like length of the crack, profundity of the fracture and the situation of the crack as for even and vertical pivot. The outcome demonstrates that the proposed technique for crack identification is better. The outcomes demonstrate that calculation is 91% exact and effective


Author(s):  
Zahra Zali ◽  
Matthias Ohrnberger ◽  
Frank Scherbaum ◽  
Fabrice Cotton ◽  
Eva P. S. Eibl

Abstract Volcanic tremor signals are usually observed before or during volcanic eruptions and must be monitored to evaluate the volcanic activity. A challenge in studying seismic signals of volcanic origin is the coexistence of transient signal swarms and long-lasting volcanic tremor signals. Separating transient events from volcanic tremors can, therefore, contribute to improving upon our understanding of the underlying physical processes. Exploiting the idea of harmonic–percussive separation in musical signal processing, we develop a method to extract the harmonic volcanic tremor signals and to detect transient events from seismic recordings. Based on the similarity properties of spectrogram frames in the time–frequency domain, we decompose the signal into two separate spectrograms representing repeating (harmonic) and nonrepeating (transient) patterns, which correspond to volcanic tremor signals and earthquake signals, respectively. We reconstruct the harmonic tremor signal in the time domain from the complex spectrogram of the repeating pattern by only considering the phase components for the frequency range in which the tremor amplitude spectrum is significantly contributing to the energy of the signal. The reconstructed signal is, therefore, clean tremor signal without transient events. Furthermore, we derive a characteristic function suitable for the detection of transient events (e.g., earthquakes) by integrating amplitudes of the nonrepeating spectrogram over frequency at each time frame. Considering transient events like earthquakes, 78% of the events are detected for signal-to-noise ratio = 0.1 in our semisynthetic tests. In addition, we compared the number of detected earthquakes using our method for one month of continuous data recorded during the Holuhraun 2014–2015 eruption in Iceland with the bulletin presented in Ágústsdóttir et al. (2019). Our single station event detection algorithm identified 84% of the bulletin events. Moreover, we detected a total of 12,619 events, which is more than twice the number of the bulletin events.


2013 ◽  
Vol 8 (9) ◽  
pp. 1095-1102
Author(s):  
Liu Bin ◽  
Zhao Xia ◽  
Wang Liming
Keyword(s):  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Syed Khairul Bashar ◽  
Dong Han ◽  
Shirin Hajeb-Mohammadalipour ◽  
Eric Ding ◽  
Cody Whitcomb ◽  
...  

Abstract Detection of atrial fibrillation (AF) from a wrist watch photoplethysmogram (PPG) signal is important because the wrist watch form factor enables long term continuous monitoring of arrhythmia in an easy and non-invasive manner. We have developed a novel method not only to detect AF from a smart wrist watch PPG signal, but also to determine whether the recorded PPG signal is corrupted by motion artifacts or not. We detect motion and noise artifacts based on the accelerometer signal and variable frequency complex demodulation based time-frequency analysis of the PPG signal. After that, we use the root mean square of successive differences and sample entropy, calculated from the beat-to-beat intervals of the PPG signal, to distinguish AF from normal rhythm. We then use a premature atrial contraction detection algorithm to have more accurate AF identification and to reduce false alarms. Two separate datasets have been used in this study to test the efficacy of the proposed method, which shows a combined sensitivity, specificity and accuracy of 98.18%, 97.43% and 97.54% across the datasets.


Sign in / Sign up

Export Citation Format

Share Document