Rational Interpolation Functions

Author(s):  
Ranjan Ganguli
Author(s):  
E. A. Rovba ◽  
V. Yu. Medvedeva

In this paper, we study the approximations of a function |x|α, α > 0 by interpolation rational Lagrange functions on a segment [–1,1]. The zeros of the even Chebyshev – Markov rational functions and a point x = 0 are chosen as the interpolation nodes. An integral representation of an interpolation remainder and an upper bound for the considered uniform approximations are obtained. Based on them, a detailed study is made:a) the polynomial case. Here, the authors come to the famous asymptotic equality of M. N. Hanzburg;b) at a fixed number of geometrically different poles, the upper estimate is obtained for the corresponding uniform approximations, which improves the well-known result of K. N. Lungu;c) when approximating by general Lagrange rational interpolation functions, the estimate of uniform approximations is found and it is shown that at the ends of the segment [–1,1] it can be improved.The results can be applied in theoretical research and numerical methods. 


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 71 ◽  
Author(s):  
Le Zou ◽  
Liangtu Song ◽  
Xiaofeng Wang ◽  
Yanping Chen ◽  
Chen Zhang ◽  
...  

The interpolation of Thiele-type continued fractions is thought of as the traditional rational interpolation and plays a significant role in numerical analysis and image interpolation. Different to the classical method, a novel type of bivariate Thiele-like rational interpolation continued fractions with parameters is proposed to efficiently address the interpolation problem. Firstly, the multiplicity of the points is adjusted strategically. Secondly, bivariate Thiele-like rational interpolation continued fractions with parameters is developed. We also discuss the interpolant algorithm, theorem, and dual interpolation of the proposed interpolation method. Many interpolation functions can be gained through adjusting the parameter, which is flexible and convenient. We also demonstrate that the novel interpolation function can deal with the interpolation problems that inverse differences do not exist or that there are unattainable points appearing in classical Thiele-type continued fractions interpolation. Through the selection of proper parameters, the value of the interpolation function can be changed at any point in the interpolant region under unaltered interpolant data. Numerical examples are given to show that the developed methods achieve state-of-the-art performance.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 767
Author(s):  
Alexandra Băicoianu ◽  
Cristina Maria Păcurar ◽  
Marius Păun

The present paper concretizes the models proposed by S. Ri and N. Secelean. S. Ri proposed the construction of the fractal interpolation function(FIF) considering finite systems consisting of Rakotch contractions, but produced no concretization of the model. N. Secelean considered countable systems of Banach contractions to produce the fractal interpolation function. Based on the abovementioned results, in this paper, we propose two different algorithms to produce the fractal interpolation functions both in the affine and non-affine cases. The theoretical context we were working in suppose a countable set of starting points and a countable system of Rakotch contractions. Due to the computational restrictions, the algorithms constructed in the applications have the weakness that they use a finite set of starting points and a finite system of Rakotch contractions. In this respect, the attractor obtained is a two-step approximation. The large number of points used in the computations and the graphical results lead us to the conclusion that the attractor obtained is a good approximation of the fractal interpolation function in both cases, affine and non-affine FIFs. In this way, we also provide a concretization of the scheme presented by C.M. Păcurar .


2011 ◽  
Vol 58 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Hoa Thang Nguyen ◽  
Annie Cuyt ◽  
Oliver Salazar Celis

Sign in / Sign up

Export Citation Format

Share Document