Matching Suitability of Geomagnetic Aided Navigation Based on Spectral Moment Characteristics

Author(s):  
Ting Li ◽  
Jinsheng Zhang ◽  
Shicheng Wang ◽  
Zhifeng Lv
Keyword(s):  
2011 ◽  
Vol 21 (2) ◽  
pp. 44-54
Author(s):  
Kerry Callahan Mandulak

Spectral moment analysis (SMA) is an acoustic analysis tool that shows promise for enhancing our understanding of normal and disordered speech production. It can augment auditory-perceptual analysis used to investigate differences across speakers and groups and can provide unique information regarding specific aspects of the speech signal. The purpose of this paper is to illustrate the utility of SMA as a clinical measure for both clinical speech production assessment and research applications documenting speech outcome measurements. Although acoustic analysis has become more readily available and accessible, clinicians need training with, and exposure to, acoustic analysis methods in order to integrate them into traditional methods used to assess speech production.


1975 ◽  
Vol 18 (10) ◽  
pp. 1069-1071
Author(s):  
M. A. Sokolov ◽  
V. I. Khimenko
Keyword(s):  

Author(s):  
Bing Ren ◽  
Yongxue Wang

The spectral analysis from experimental data of irregular wave impact on the structures with large dimension in the splash zone is presented. The experiments were conducted in the large wave-current tank in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology. In the experiment, the target spectrum is JONSWAP spectrum, the significant wave height H1/3 is in the range from 0.1m to 0.3m, and the peak period of spectrum Tp in the range from 1.0s to 2.0s. The ratio of s/H1/3, which refers to the clearance of the subface of the structure above still water level (s) to the incident wave height, is between −0.1 and 0.4. The spectral analysis results of the irregular wave impact pressure on the subface of the structure under various case studies are presented. The distribution of spectral moment of the impact pressure on the structure along the subface is given. And the influence of different incident wave parameters and relative clearance s/H1/3 on the average spectral moment of impact pressure are discussed.


1976 ◽  
Vol 54 (5) ◽  
pp. 611-617 ◽  
Author(s):  
A. D. Buckingham ◽  
A. J. C. Ladd

The theory of pressure-induced absorption of far infrared radiation by gases is extended to include the contribution of the dipole moment induced in a molecule by the field gradient due to its neighbours. This dipole is nonzero when the molecule lacks a centre of inversion, as in a tetrahedron. In the collision of two tetrahedra, the dipole induced in molecule 2 by the electric field of the octopole moment Ω1 of the partner leads to transitions in which ΔJ(1) = 0, ± 1, ±2, ±3, and ΔJ(2) = 0. The dipole induced by the field gradient of Ω1 leads to ΔJ(1) = 0, ±1, ±2, ±3, and ΔJ(2) = 0, ±1, ±2, ±3, and therefore gives a required increase in absorption at higher frequencies. The field-gradient contribution vanishes in a collision involving a tetrahedral and a spherical molecule. General expressions are given for the field-gradient contributions to the integrated intensity and to the −2 spectral moment.


2019 ◽  
Vol 146 (4) ◽  
pp. 2994-2994
Author(s):  
Hsin-Hua Chen ◽  
Yunying She ◽  
Yaoh-shiang Lin

Sign in / Sign up

Export Citation Format

Share Document