Data Fusion of Small Sample Flying Test Data and Big Sample Simulation Test Data Based on Equivalent Sample for Equipment Efficiency Evaluation

Author(s):  
Xiaolei Ning ◽  
Yingxia Wu ◽  
Hailin Zhang ◽  
Xin Zhao
2013 ◽  
Vol 321-324 ◽  
pp. 600-603
Author(s):  
Wei Liu ◽  
Qin Sheng Du ◽  
Le Le Wang

Wireless sensor networks integrated four technologies including sensor, embedded computing, network technology and wireless communication. It is a new type of non-infrastructure wireless network. In this paper, a data fusion method has been brought forward based on wireless sensor networks, and through an algorithm simulation test, It is proved that the algorithm is effective to reduce the energy consumption of the network, and extend the lifetime of the network.


Author(s):  
Zhigang Wei ◽  
Limin Luo ◽  
Burt Lin ◽  
Dmitri Konson ◽  
Kamran Nikbin

Good durability/reliability performance of products can be achieved by properly constructing and implementing design curves, which are usually obtained by analyzing test data, such as fatigue S-N data. A good design curve construction approach should consider sample size, failure probability and confidence level, and these features are especially critical when test sample size is small. The authors have developed a design S-N curve construction method based on the tolerance limit concept. However, recent studies have shown that the analytical solutions based on the tolerance limit approach may not be accurate for very small sample size because of the assumptions and approximations introduced to the analytical approach. In this paper a Monte Carlo simulation approach is used to construct design curves for test data with an assumed underlining normal (or lognormal) distribution. The difference of factor K, which measures the confidence level of the test data, between the analytical solution and the Monte Carlo simulation solutions is compared. Finally, the design curves constructed based on these methods are demonstrated and compared using fatigue S-N data with small sample size.


Author(s):  
Zhigang Wei ◽  
Limin Luo ◽  
Fulun Yang ◽  
Robert Rebandt

Fatigue design curve construction is commonly used for durability and reliability assessment of engineering components subjected to cyclic loading. A wide variety of design curve construction methods have been developed over the last decades. Some of the methods have been adopted by engineering codes and widely used in industry. However, the traditional design curve construction methods usually require significant amounts of test data in order for the constructed design curves to be consistently and reliably used in product design and validation. In order to reduce the test sample size and associated testing time and cost, several Bayesian statistics based design curve construction methods have been recently successfully developed by several research groups. Among all of these methods, an efficient Monte Carlo simulation based resampling method developed by the authors of this paper is of particular importance. The method is based on a large amount of reliable historical fatigue test data, the associated probabilistic distributions of the mean and standard deviation of the failure cycles, and an advanced acceptance-rejection resampling algorithm. However, finite element analysis (FEA) methods and a special stress recovery technique are required to process the test data, which is usually a time-consuming process. A more straightforward approach that does not require these intermediate processes is strongly preferred. This study presents such an approach, in which the only historical information needed is the distribution of the standard deviation of the cycles to failure. The distribution of the mean is directly calculated from the current tested data and the Central Limit Theorem. Neither FEA nor stress recovery technique is required for this approach, and the effort put into design curve construction can be significantly reduced. This method can be used to complement the previously developed Bayesian methods.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Zhenning Dong ◽  
Caiyi Hu ◽  
Zhongwei Mao ◽  
Yuelong Su ◽  
Yi Zhao

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Peng Di ◽  
Xuan Wang ◽  
Tong Chen ◽  
Bin Hu

The multisensor data fusion method has been extensively utilized in many practical applications involving testability evaluation. Due to the flexibility and effectiveness of Dempster–Shafer evidence theory in modeling and processing uncertain information, this theory has been widely used in various fields of multisensor data fusion method. However, it may lead to wrong results when fusing conflicting multisensor data. In order to deal with this problem, a testability evaluation method of equipment based on multisensor data fusion method is proposed. First, a novel multisensor data fusion method, based on the improvement of Dempster–Shafer evidence theory via the Lance distance and the belief entropy, is proposed. Next, based on the analysis of testability multisensor data, such as testability virtual test data, testability test data of replaceable unit, and testability growth test data, the corresponding prior distribution conversion schemes of testability multisensor data are formulated according to their different characteristics. Finally, the testability evaluation method of equipment based on the multisensor data fusion method is proposed. The result of experiment illustrated that the proposed method is feasible and effective in handling the conflicting evidence; besides, the accuracy of fusion of the proposed method is higher and the result of evaluation is more reliable than other testability evaluation methods, which shows that the basic probability assignment of the true target is 94.71%.


2021 ◽  
Author(s):  
Sara Rabouli ◽  
Vivien Dubois ◽  
Marc Serre ◽  
Julien Gance ◽  
Hocine Henine ◽  
...  

<p>The soil is considered as a biological reactor or an outlet for treated domestic wastewater, respectively to reduce pollutant concentrations in the flows or because the surface hydraulic medium is too remote. In these cases, the saturated hydraulic conductivity of the soil is a key is a quantitative measure to assess whether the necessary infiltration capacity is available. To our knowledge, there is no satisfactory technique for evaluating the saturated hydraulic conductivity Ks of a heterogeneous soil (and its variability) at the scale of a parcel of soil. The aim of this study is to introduce a methodology that associates geophysical measurements and geotechnical in order to better described the near-surface saturated hydraulic conductivity Ks. Here we demonstrate here the interest of using a geostatistical approach, the BME "Bayesian Maximum Entropy", to obtain a 2D spatialization of Ks in heterogeneous soils. This tool opens up prospects for optimizing the sizing infiltration structures that receive treated wastewater. In our case, we have Electrical Resistivity Tomography (ERT) data (dense but with high uncertainty) and infiltration test data (reliable but sparse). The BME approach provides a flexible methodological framework to process these data. The advantage of BME is that it reduces to kriging as its linear limiting cases when only Gaussian data is used, but can also integrate data of other types as might be considered in future works. Here we use hard and Gaussian soft data to rigorously integrate the different data at hand (ERT, and Ks measurement) and their associated uncertainties. Based on statistical analysis, we compared the estimation performances of 3 methods: kriging interpolation of infiltration test data, the transformation of ERT data, and BME data fusion of geotechnical and geophysical data. We evaluated the 3 methods of estimation on simulated datasets and we then do a validation analysis using real field data. We find that BME data fusion of geotechnical and geophysical data provides better estimates of hydraulic conductivity than using geotechnical or geophysical data alone.</p>


2021 ◽  
Vol 46 (1) ◽  
pp. 108-113
Author(s):  
Mallappa ◽  
S. Ramesh ◽  
D. G. Chandra ◽  
A. Rajan ◽  
T. K. Nandi

Sign in / Sign up

Export Citation Format

Share Document