Comparison of Seismic Design and Performance of Tall Buildings Based on Chinese and US Design Codes

Author(s):  
Xinzheng Lu ◽  
Hong Guan
2013 ◽  
Vol 29 (1_suppl) ◽  
pp. 99-126 ◽  
Author(s):  
Gary Chock ◽  
Lyle Carden ◽  
Ian Robertson ◽  
Michael Olsen ◽  
Guangren Yu

The structural details of numerous damaged buildings in the Tohoku region were documented soon after the 11 March 2011 Tohoku-oki earthquake and tsunami by a reconnaissance team sponsored by the American Society of Civil Engineers. Tsunami flow depths and velocities were determined based on analysis of video records and the observed effects on simple benchmark structures in the flow. Equations for various conditions of fluid loading were then validated through failure analyses completed for several buildings, using finite element modeling and LiDAR scans. These analysis tools were applied full-scale to buildings with clearly identified failure mechanisms to validate methodologies to be included in a new chapter on “Tsunami Loads and Effects” in the ASCE 7-2016 Standard, Minimum Design Loads for Buildings and Other Structures. These findings, together with an analysis of the inherent seismic inelastic capacities of mid-rise buildings, are relevant for establishing the loadings and performance objectives proposed for the new chapter on “Tsunami Loads and Effects” in the ASCE 7 Standard.


2013 ◽  
Vol 9 (4) ◽  
pp. 49-54
Author(s):  
Adrian Zăvoianu ◽  
Radu Pascu

Abstract Tall buildings present some specific aspects influencing the modeling and response to seismic loads. Therefore, the design rules recommended in codes, calibrated for low and medium rise buildings, are not appropriate for design of tall buildings. Other rules are needed, and performance based design represents a viable alternative for tall buildings. In this paper a methodology for the design of tall structures is proposed and it is illustrated trough a case study for a structure with perimeter tube and interior core walls, which aims to identify the particularities regarding the design, behavior and the parameters that define the post elastic behavior at the global and local level, for this structures.


2021 ◽  
pp. 875529302098801
Author(s):  
José Wilches ◽  
Hernán Santa Maria ◽  
Roberto Leon ◽  
Rafael Riddell ◽  
Matías Hube ◽  
...  

Chile, as a country with a long history of strong seismicity, has a record of both a constant upgrading of its seismic design codes and structural systems, particularly for bridges, as a result of major earthquakes. Recent earthquakes in Chile have produced extensive damage to highway bridges, such as deck collapses, large transverse residual displacements, yielding and failure of shear keys, and unseating of the main girders, demonstrating that bridges are highly vulnerable structures. Much of this damage can be attributed to construction problems and poor detailing guidelines in design codes. After the 2010 Maule earthquake, new structural design criteria were incorporated for the seismic design of bridges in Chile. The most significant change was that a site coefficient was included for the estimation of the seismic design forces in the shear keys, seismic bars, and diaphragms. This article first traces the historical development of earthquakes and construction systems in Chile to provide a context for the evolution of Chilean seismic codes. It then describes the seismic performance of highway bridges during the 2010 Maule earthquake, including the description of the main failure modes observed in bridges. Finally, this article provides a comparison of the Chilean bridge seismic code against the Japanese and United States codes, considering that these codes have a great influence on the seismic codes for Chilean bridges. The article demonstrates that bridge design and construction practices in Chile have evolved substantially in their requirements for the analysis and design of structural elements, such as in the definition of the seismic hazard to be considered, tending toward more conservative approaches in an effort to improve structural performance and reliability for Chilean bridges.


2021 ◽  
Vol 11 (2) ◽  
pp. 597
Author(s):  
Milan Sokol ◽  
Rudolf Ároch ◽  
Katarína Lamperová ◽  
Martin Marton ◽  
Justo García-Sanz-Calcedo

This paper uses a parametric study to evaluate the significance of the rotational components of Earth’s motion in a seismic design. The parametric study is based on the procedures included in Eurocode 8, Part 6. Although the answer to the question of when the effects of rotational components are important is quite a complex one and requires a more in-depth study, our aim was to try to assess this question in a relatively quick manner and with acceptable accuracy. The first part of the paper is devoted to derivation of a simple formula that can be used for expressing the importance of rotational components in comparison with the classic seismic design without their usage. The quasi-static analysis, assuming inertial forces, is used. A crucial role plays the shape of the fundamental mode of the vibration. Due to simplicity reasons, well-known expression for estimation of the first eigenmode as an exponential function with different power coefficients that vary for different types of buildings is used. The possibility of changing the soil parameters is subsequently included into the formula for estimation of the fundamental frequency of tall buildings. In the next part, the overall seismic analyses of complex FEM models of 3D buildings and chimneys are performed. The results from those analyses are then compared with those from simplified calculations. The importance of the soil characteristics for determination of whether it is necessary to take into account the rotational effects is further discussed.


2021 ◽  
pp. 875529302098196
Author(s):  
Siamak Sattar ◽  
Anne Hulsey ◽  
Garrett Hagen ◽  
Farzad Naeim ◽  
Steven McCabe

Performance-based seismic design (PBSD) has been recognized as a framework for designing new buildings in the United States in recent years. Various guidelines and standards have been developed to codify and document the implementation of PBSD, including “ Seismic Evaluation and Retrofit of Existing Buildings” (ASCE 41-17), the Tall Buildings Initiative’s Guidelines for Performance-Based Seismic Design of Tall Buildings (TBI Guidelines), and the Los Angeles Tall Buildings Structural Design Council’s An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region (LATBSDC Procedure). The main goal of these documents is to regularize the implementation of PBSD for practicing engineers. These documents were developed independently with experts from varying backgrounds and organizations and consequently have differences in several degrees from basic intent to the details of the implementation. As the main objective of PBSD is to ensure a specified building performance, these documents would be expected to provide similar recommendations for achieving a given performance objective for new buildings. This article provides a detailed comparison among each document’s implementation of PBSD for reinforced concrete buildings, with the goal of highlighting the differences among these documents and identifying provisions in which the designed building may achieve varied performance depending on the chosen standard/guideline. This comparison can help committees developing these documents to be aware of their differences, investigate the sources of their divergence, and bring these documents closer to common ground in future cycles.


1989 ◽  
Vol 29 (3) ◽  
pp. 277-291 ◽  
Author(s):  
Seema Alim ◽  
David Lloyd Smith

Sign in / Sign up

Export Citation Format

Share Document