Implementing the performance-based seismic design for new reinforced concrete structures: Comparison among ASCE/SEI 41, TBI, and LATBSDC

2021 ◽  
pp. 875529302098196
Author(s):  
Siamak Sattar ◽  
Anne Hulsey ◽  
Garrett Hagen ◽  
Farzad Naeim ◽  
Steven McCabe

Performance-based seismic design (PBSD) has been recognized as a framework for designing new buildings in the United States in recent years. Various guidelines and standards have been developed to codify and document the implementation of PBSD, including “ Seismic Evaluation and Retrofit of Existing Buildings” (ASCE 41-17), the Tall Buildings Initiative’s Guidelines for Performance-Based Seismic Design of Tall Buildings (TBI Guidelines), and the Los Angeles Tall Buildings Structural Design Council’s An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region (LATBSDC Procedure). The main goal of these documents is to regularize the implementation of PBSD for practicing engineers. These documents were developed independently with experts from varying backgrounds and organizations and consequently have differences in several degrees from basic intent to the details of the implementation. As the main objective of PBSD is to ensure a specified building performance, these documents would be expected to provide similar recommendations for achieving a given performance objective for new buildings. This article provides a detailed comparison among each document’s implementation of PBSD for reinforced concrete buildings, with the goal of highlighting the differences among these documents and identifying provisions in which the designed building may achieve varied performance depending on the chosen standard/guideline. This comparison can help committees developing these documents to be aware of their differences, investigate the sources of their divergence, and bring these documents closer to common ground in future cycles.

2010 ◽  
Vol 163-167 ◽  
pp. 1757-1761
Author(s):  
Yong Le Qi ◽  
Xiao Lei Han ◽  
Xue Ping Peng ◽  
Yu Zhou ◽  
Sheng Yi Lin

Various analytical approaches to performance-based seismic design are in development. Based on the current Chinese seismic codes,elastic capacity calculation under frequent earthquake and ductile details of seismic design shall be performed for whether seismic design of new buildings or seismic evaluation of existing buildings to satisfy the seismic fortification criterion “no damage under frequent earthquake, repairable under fortification earthquake, no collapse under severe earthquake”. However, for some special buildings which dissatisfy with the requirements of current building codes, elastic capacity calculation under frequent earthquake is obviously not enough. In this paper, the advanced performance-based seismic theory is introduced to solve the problems of seismic evaluation and strengthening for existing reinforced concrete structures, in which story drift ratio and deformation of components are used as performance targets. By combining the features of Chinese seismic codes, a set of performance-based seismic design method is established for reinforced concrete structures. Different calculation methods relevant to different seismic fortification criterions are adopted in the proposed method, which solve the problems of seismic evaluation for reinforced concrete structures.


Author(s):  
Arzhang Alimoradi ◽  
Shahram Pezeshk ◽  
Christopher Foley

The chapter provides an overview of optimal structural design procedures for seismic performance. Structural analysis and design for earthquake effects is an evolving area of science; many design philosophies and concepts have been proposed, investigated, and practiced in the past three decades. The chapter briefly introduces some of these advancements first, as their understanding is essential in a successful application of optimal seismic design for performance. An emerging trend in seismic design for optimal performance is speculated next. Finally, a state-of-the-art application of evolutionary algorithms in probabilistic performance-based seismic design of steel moment frame buildings is described through an example. In order to follow the concepts of this chapter, the reader is assumed equipped with a basic knowledge of structural mechanics, dynamics of structures, and design optimizations.


Author(s):  
Fabrizio Paolacci ◽  
Md. Shahin Reza ◽  
Oreste S. Bursi ◽  
Arnold M. Gresnigt ◽  
Anil Kumar

A significant number of damages in piping systems and components during recent seismic events have been reported in literature which calls for a proper seismic design of these structures. Nevertheless, there exists an inadequacy of proper seismic analysis and design rules for a piping system and its components. Current seismic design Codes are found to be over conservative and some components, e.g., bolted flange joints, do not have guidelines for their seismic design. Along this line, this paper discusses about the main issues on the seismic analysis and design of industrial piping systems and components. Initially, seismic analysis and component design of refinery piping systems are described. A review of current design approaches suggested by European (EN13480:3) and American (ASME B31.3) Codes is performed through a Case Study on a piping system. Some limits of available Codes are identified and a number of critical aspects of the problem e.g., dynamic interaction between pipes and rack, correct definition of the response factor and strain versus stress approach, are illustrated. Finally, seismic performance of bolted flange joints based on the results of experimental investigations carried out by the University of Trento, Italy, will be discussed.


2016 ◽  
Vol 32 (3) ◽  
pp. 1821-1843 ◽  
Author(s):  
Mehmet Çelebi ◽  
Hasan S. Ulusoy ◽  
Nori Nakata

The increasing inventory of tall buildings in the United States and elsewhere may be subjected to motions generated by near and far seismic sources that cause long-period effects. Multiple sets of records that exhibited such effects were retrieved from tall buildings in Tokyo and Osaka ∼350 km and 770 km, respectively, from the epicenter of the 2011 Tohoku earthquake. In California, very few tall buildings have been instrumented. An instrumented 52-story building in downtown Los Angeles recorded seven local and distant earthquakes. Spectral and system identification methods exhibit significant low frequencies of interest (∼0.17 Hz, 0.56 Hz, and 1.05 Hz). These frequencies compare well with those computed by transfer functions; however, small variations are observed between the significant low frequencies for each of the seven earthquakes. The torsional and translational frequencies are very close and are coupled. Beating effect is observed in at least two of the seven earthquake data.


2012 ◽  
Vol 193-194 ◽  
pp. 1079-1085
Author(s):  
Ben Yan Lu ◽  
Zhong Bin Cai ◽  
Zhong Qin Ye ◽  
Ya Jun Chen

According to the failure characteristics of reinforced concrete bridge columns and the need of performance based seismic design in bridge, reinforced concrete bridge column performance levels, which are categorized into fully operational, temporarily operational, reparably operational, life safe and near collapse levels are established. To relate bridge damage to socio-economic descriptions at the five designated performance levels, qualitative indices are established. Considering field investigations following a seismic event, quantitative indices for the same five designated performance levels are proposed. Based on the statistical data of 154 seismic performance tests of RC bridge columns with circular section subjected to flexural failure, drift ratio limit for the same five designated performance levels are put forward. It can be used to determine displacement of pier top in performance based seismic design.


2011 ◽  
Vol 243-249 ◽  
pp. 3992-3996
Author(s):  
Gui Xuan Wang ◽  
Jie Zhao ◽  
Zhen Liu ◽  
Yang Zheng

The performance-based design is a new development trend of seismic design. It is a breakthrough of the seismic design procedures. Based on the existing performance design method and some documents provided performance objective, computing and seismic structural measures, the performance-based seismic design is applied to the special structure of conventional island of the nuclear power plant. The performance-based seismic design is proved to be feasible according to a practical engineering case, as well the performance-based seismic design is needed to be further improved.


Sign in / Sign up

Export Citation Format

Share Document