Neighborhood Topology to Discover Influential Nodes in a Complex Network

Author(s):  
Chandni Saxena ◽  
M. N. Doja ◽  
Tanvir Ahmad
2018 ◽  
Vol 29 (08) ◽  
pp. 1850075
Author(s):  
Tingyuan Nie ◽  
Xinling Guo ◽  
Mengda Lin ◽  
Kun Zhao

The quantification for the invulnerability of complex network is a fundamental problem in which identifying influential nodes is of theoretical and practical significance. In this paper, we propose a novel definition of centrality named total information (TC) which derives from a local sub-graph being constructed by a node and its neighbors. The centrality is then defined as the sum of the self-information of the node and the mutual information of its neighbor nodes. We use the proposed centrality to identify the importance of nodes through the evaluation of the invulnerability of scale-free networks. It shows both the efficiency and the effectiveness of the proposed centrality are improved, compared with traditional centralities.


2014 ◽  
Vol 25 (03) ◽  
pp. 1350096 ◽  
Author(s):  
Biao Cai ◽  
Xian-Guo Tuo ◽  
Kai-Xue Yang ◽  
Ming-Zhe Liu

Some tiny party of influential nodes may highly affect spread of information in complex networks. For the case of very high time complexity in the shortest path computation of global centralities, making use of local community centrality to identify influential nodes is an open and possible problem. Compared to degree and local centralities, a five-heartbeat forward community centrality is proposed in this paper, in which a five-step induced sub-graph of certain node in the network will be achieved. Next, we induce the minimal spanning tree (MMT) of the sub-graph. Finally, we take the sum of all weights of the MMT as community centrality measurement that needs to be the influential ranking of the node. We use the susceptible, infected and recovered (SIR) model to evaluate the performance of this method on several public test network data and explore the forward steps of community centrality by experiments. Simulative results show that our method with five steps can identify the influential ranking of nodes in complex network as well.


Algorithms ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 280
Author(s):  
Jinfang Sheng ◽  
Jiafu Zhu ◽  
Yayun Wang ◽  
Bin Wang ◽  
Zheng’ang Hou

The real world contains many kinds of complex network. Using influence nodes in complex networks can promote or inhibit the spread of information. Identifying influential nodes has become a hot topic around the world. Most of the existing algorithms used for influential node identification are based on the structure of the network such as the degree of the nodes. However, the attribute information of nodes also affects the ranking of nodes’ influence. In this paper, we consider both the attribute information between nodes and the structure of networks. Therefore, the similarity ratio, based on attribute information, and the degree ratio, based on structure derived from trust-value, are proposed. The trust–PageRank (TPR) algorithm is proposed to identify influential nodes in complex networks. Finally, several real networks from different fields are selected for experiments. Compared with some existing algorithms, the results suggest that TPR more rationally and effectively identifies the influential nodes in networks.


2021 ◽  
Author(s):  
Sarkhosh S. Chaharborj ◽  
Shahriar S. Chaharborj ◽  
Phang Pei See

Abstract We study importance of influential nodes in spreading of epidemic COVID-19 in a complex network. We will show that quarantine of important and influential nodes or consider of health protocols by efficient nodes is very helpful and effective in the controlling of spreading epidemic COVID-19 in a complex network. Therefore, identifying influential nodes in complex networks is the very significant part of dependability analysis, which has been a clue matter in analyzing the structural organization of a network. The important nodes can be considered as a person or as an organization. To find the influential nodes we use the technique for order preference by similarity to ideal solution (TOPSIS) method with new proposed formula to obtain the efficient weights. We use various centrality measures as the multi-attribute of complex network in the TOPSIS method. We define a formula for spreading probability of epidemic disease in a complex network to study the power of infection spreading with quarantine of important nodes. In the following, we use the Susceptible–Infected (SI) model to figure out the performance and efficiency of the proposed methods. The proposed method has been examined for efficiency and practicality using numerical examples.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 7390-7401 ◽  
Author(s):  
Muluneh Mekonnen Tulu ◽  
Ronghui Hou ◽  
Talha Younas

Sign in / Sign up

Export Citation Format

Share Document