Fuzzy-Based Adaptive IMC-PI Controller for Real-Time Application on a Level Control Loop

Author(s):  
Ujjwal Manikya Nath ◽  
Chanchal Dey ◽  
Rajani K. Mudi
2022 ◽  
Vol 16 (2) ◽  
pp. 205
Author(s):  
Rajani K. Mudi ◽  
Ujjwal Manikya Nath ◽  
Chanchal Dey

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5209 ◽  
Author(s):  
Andrea Gonzalez-Rodriguez ◽  
Jose L. Ramon ◽  
Vicente Morell ◽  
Gabriel J. Garcia ◽  
Jorge Pomares ◽  
...  

The main goal of this study is to evaluate how to optimally select the best vibrotactile pattern to be used in a closed loop control of upper limb myoelectric prostheses as a feedback of the exerted force. To that end, we assessed both the selection of actuation patterns and the effects of the selection of frequency and amplitude parameters to discriminate between different feedback levels. A single vibrotactile actuator has been used to deliver the vibrations to subjects participating in the experiments. The results show no difference between pattern shapes in terms of feedback perception. Similarly, changes in amplitude level do not reflect significant improvement compared to changes in frequency. However, decreasing the number of feedback levels increases the accuracy of feedback perception and subject-specific variations are high for particular participants, showing that a fine-tuning of the parameters is necessary in a real-time application to upper limb prosthetics. In future works, the effects of training, location, and number of actuators will be assessed. This optimized selection will be tested in a real-time proportional myocontrol of a prosthetic hand.


2021 ◽  
Vol 714 (4) ◽  
pp. 042046
Author(s):  
Jiangping Nan ◽  
Yajuan Jia ◽  
Xuezhen Dai ◽  
Yinglu Liu ◽  
Xiaowen Ren ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1924
Author(s):  
Patrick Seeling ◽  
Martin Reisslein ◽  
Frank H. P. Fitzek

The Tactile Internet will require ultra-low latencies for combining machines and humans in systems where humans are in the control loop. Real-time and perceptual coding in these systems commonly require content-specific approaches. We present a generic approach based on deliberately reduced number accuracy and evaluate the trade-off between savings achieved and errors introduced with real-world data for kinesthetic movement and tele-surgery. Our combination of bitplane-level accuracy adaptability with perceptual threshold-based limits allows for great flexibility in broad application scenarios. Combining the attainable savings with the relatively small introduced errors enables the optimal selection of a working point for the method in actual implementations.


Author(s):  
M. M. Astrahan ◽  
B. Housman ◽  
J. F. Jacobs ◽  
R. P. Mayer ◽  
W. H. Thomas

Sign in / Sign up

Export Citation Format

Share Document