Visual Tracking Based on Ensemble Learning with Logistic Regression

Author(s):  
Xiaolin Tian ◽  
Sujie Zhao ◽  
Licheng Jiao
2021 ◽  
Vol 11 (3) ◽  
pp. 767-772
Author(s):  
Wenxian Peng ◽  
Yijia Qian ◽  
Yingying Shi ◽  
Shuyun Chen ◽  
Kexin Chen ◽  
...  

Purpose: Calcification nodules in thyroid can be found in thyroid disease. Current clinical computed tomography systems can be used to detect calcification nodules. Our aim is to identify the nature of thyroid calcification nodule based on plain CT images. Method: Sixty-three patients (36 benign and 27 malignant nodules) found thyroid calcification nodules were retrospectively analyzed, together with computed tomography images and pathology finding. The regions of interest (ROI) of 6464 pixels containing calcification nodules were manually delineated by radiologists in CT plain images. We extracted thirty-one texture features from each ROI. And nineteen texture features were picked up after feature optimization by logistic regression analysis. All the texture features were normalized to [0, 1]. Four classification algorithms, including ensemble learning, support vector machine, K-nearest neighbor, decision tree, were used as classification algorithms to identity the benign and malignant nodule. Accuracy, PPV, NPV, SEN, and AUC were calculated to evaluate the performance of different classifiers. Results: Nineteen texture features were selected after feature optimization by logistic regression analysis (P <0.05). Both Ensemble Learning and Support Vector Machine achieved the highest accuracy of 97.1%. The PPV, NPV, SEN, and SPC are 96.9%, 97.4%, 98.4%, and 95.0%, respectively. The AUC was 1. Conclusion: Texture features extracted from calcification nodules could be used as biomarkers to identify benign or malignant thyroid calcification.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ralph K. Akyea ◽  
Nadeem Qureshi ◽  
Joe Kai ◽  
Stephen F. Weng

Abstract Familial hypercholesterolaemia (FH) is a common inherited disorder, causing lifelong elevated low-density lipoprotein cholesterol (LDL-C). Most individuals with FH remain undiagnosed, precluding opportunities to prevent premature heart disease and death. Some machine-learning approaches improve detection of FH in electronic health records, though clinical impact is under-explored. We assessed performance of an array of machine-learning approaches for enhancing detection of FH, and their clinical utility, within a large primary care population. A retrospective cohort study was done using routine primary care clinical records of 4,027,775 individuals from the United Kingdom with total cholesterol measured from 1 January 1999 to 25 June 2019. Predictive accuracy of five common machine-learning algorithms (logistic regression, random forest, gradient boosting machines, neural networks and ensemble learning) were assessed for detecting FH. Predictive accuracy was assessed by area under the receiver operating curves (AUC) and expected vs observed calibration slope; with clinical utility assessed by expected case-review workload and likelihood ratios. There were 7928 incident diagnoses of FH. In addition to known clinical features of FH (raised total cholesterol or LDL-C and family history of premature coronary heart disease), machine-learning (ML) algorithms identified features such as raised triglycerides which reduced the likelihood of FH. Apart from logistic regression (AUC, 0.81), all four other ML approaches had similarly high predictive accuracy (AUC > 0.89). Calibration slope ranged from 0.997 for gradient boosting machines to 1.857 for logistic regression. Among those screened, high probability cases requiring clinical review varied from 0.73% using ensemble learning to 10.16% using deep learning, but with positive predictive values of 15.5% and 2.8% respectively. Ensemble learning exhibited a dominant positive likelihood ratio (45.5) compared to all other ML models (7.0–14.4). Machine-learning models show similar high accuracy in detecting FH, offering opportunities to increase diagnosis. However, the clinical case-finding workload required for yield of cases will differ substantially between models.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1756
Author(s):  
Yiheng Li ◽  
Weidong Chen

Extensive research has been performed by organizations and academics on models for credit scoring, an important financial management activity. With novel machine learning models continue to be proposed, ensemble learning has been introduced into the application of credit scoring, several researches have addressed the supremacy of ensemble learning. In this research, we provide a comparative performance evaluation of ensemble algorithms, i.e., random forest, AdaBoost, XGBoost, LightGBM and Stacking, in terms of accuracy (ACC), area under the curve (AUC), Kolmogorov–Smirnov statistic (KS), Brier score (BS), and model operating time in terms of credit scoring. Moreover, five popular baseline classifiers, i.e., neural network (NN), decision tree (DT), logistic regression (LR), Naïve Bayes (NB), and support vector machine (SVM) are considered to be benchmarks. Experimental findings reveal that the performance of ensemble learning is better than individual learners, except for AdaBoost. In addition, random forest has the best performance in terms of five metrics, XGBoost and LightGBM are close challengers. Among five baseline classifiers, logistic regression outperforms the other classifiers over the most of evaluation metrics. Finally, this study also analyzes reasons for the poor performance of some algorithms and give some suggestions on the choice of credit scoring models for financial institutions.


2015 ◽  
Vol 4 (1) ◽  
pp. 61-81
Author(s):  
Mohammad Masoud Javidi

Multi-label classification is an extension of conventional classification in which a single instance can be associated with multiple labels. Problems of this type are ubiquitous in everyday life. Such as, a movie can be categorized as action, crime, and thriller. Most algorithms on multi-label classification learning are designed for balanced data and don’t work well on imbalanced data. On the other hand, in real applications, most datasets are imbalanced. Therefore, we focused to improve multi-label classification performance on imbalanced datasets. In this paper, a state-of-the-art multi-label classification algorithm, which called IBLR_ML, is employed. This algorithm is produced from combination of k-nearest neighbor and logistic regression algorithms. Logistic regression part of this algorithm is combined with two ensemble learning algorithms, Bagging and Boosting. My approach is called IB-ELR. In this paper, for the first time, the ensemble bagging method whit stable learning as the base learner and imbalanced data sets as the training data is examined. Finally, to evaluate the proposed methods; they are implemented in JAVA language. Experimental results show the effectiveness of proposed methods. Keywords: Multi-label classification, Imbalanced data set, Ensemble learning, Stable algorithm, Logistic regression, Bagging, Boosting


2017 ◽  
Vol 12 (1) ◽  
pp. 33-40
Author(s):  
Lei Qu ◽  
Guoqiang Zhao ◽  
Baochen Yao ◽  
Yuzhen Li

Sign in / Sign up

Export Citation Format

Share Document