scholarly journals Learning from Imbalanced Multi-label Data Sets by Using Ensemble Strategies

2015 ◽  
Vol 4 (1) ◽  
pp. 61-81
Author(s):  
Mohammad Masoud Javidi

Multi-label classification is an extension of conventional classification in which a single instance can be associated with multiple labels. Problems of this type are ubiquitous in everyday life. Such as, a movie can be categorized as action, crime, and thriller. Most algorithms on multi-label classification learning are designed for balanced data and don’t work well on imbalanced data. On the other hand, in real applications, most datasets are imbalanced. Therefore, we focused to improve multi-label classification performance on imbalanced datasets. In this paper, a state-of-the-art multi-label classification algorithm, which called IBLR_ML, is employed. This algorithm is produced from combination of k-nearest neighbor and logistic regression algorithms. Logistic regression part of this algorithm is combined with two ensemble learning algorithms, Bagging and Boosting. My approach is called IB-ELR. In this paper, for the first time, the ensemble bagging method whit stable learning as the base learner and imbalanced data sets as the training data is examined. Finally, to evaluate the proposed methods; they are implemented in JAVA language. Experimental results show the effectiveness of proposed methods. Keywords: Multi-label classification, Imbalanced data set, Ensemble learning, Stable algorithm, Logistic regression, Bagging, Boosting

2021 ◽  
Vol 87 (6) ◽  
pp. 445-455
Author(s):  
Yi Ma ◽  
Zezhong Zheng ◽  
Yutang Ma ◽  
Mingcang Zhu ◽  
Ran Huang ◽  
...  

Many manifold learning algorithms conduct an eigen vector analysis on a data-similarity matrix with a size of N×N, where N is the number of data points. Thus, the memory complexity of the analysis is no less than O(N2). We pres- ent in this article an incremental manifold learning approach to handle large hyperspectral data sets for land use identification. In our method, the number of dimensions for the high-dimensional hyperspectral-image data set is obtained with the training data set. A local curvature varia- tion algorithm is utilized to sample a subset of data points as landmarks. Then a manifold skeleton is identified based on the landmarks. Our method is validated on three AVIRIS hyperspectral data sets, outperforming the comparison algorithms with a k–nearest-neighbor classifier and achieving the second best performance with support vector machine.


2021 ◽  
Vol 32 (2) ◽  
pp. 20-25
Author(s):  
Efraim Kurniawan Dairo Kette

In pattern recognition, the k-Nearest Neighbor (kNN) algorithm is the simplest non-parametric algorithm. Due to its simplicity, the model cases and the quality of the training data itself usually influence kNN algorithm classification performance. Therefore, this article proposes a sparse correlation weight model, combined with the Training Data Set Cleaning (TDC) method by Classification Ability Ranking (CAR) called the CAR classification method based on Coefficient-Weighted kNN (CAR-CWKNN) to improve kNN classifier performance. Correlation weight in Sparse Representation (SR) has been proven can increase classification accuracy. The SR can show the 'neighborhood' structure of the data, which is why it is very suitable for classification based on the Nearest Neighbor. The Classification Ability (CA) function is applied to classify the best training sample data based on rank in the cleaning stage. The Leave One Out (LV1) concept in the CA works by cleaning data that is considered likely to have the wrong classification results from the original training data, thereby reducing the influence of the training sample data quality on the kNN classification performance. The results of experiments with four public UCI data sets related to classification problems show that the CAR-CWKNN method provides better performance in terms of accuracy.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3811
Author(s):  
Iosif Sorin Fazakas-Anca ◽  
Arina Modrea ◽  
Sorin Vlase

This paper proposes a new method for calculating the monomer reactivity ratios for binary copolymerization based on the terminal model. The original optimization method involves a numerical integration algorithm and an optimization algorithm based on k-nearest neighbour non-parametric regression. The calculation method has been tested on simulated and experimental data sets, at low (<10%), medium (10–35%) and high conversions (>40%), yielding reactivity ratios in a good agreement with the usual methods such as intersection, Fineman–Ross, reverse Fineman–Ross, Kelen–Tüdös, extended Kelen–Tüdös and the error in variable method. The experimental data sets used in this comparative analysis are copolymerization of 2-(N-phthalimido) ethyl acrylate with 1-vinyl-2-pyrolidone for low conversion, copolymerization of isoprene with glycidyl methacrylate for medium conversion and copolymerization of N-isopropylacrylamide with N,N-dimethylacrylamide for high conversion. Also, the possibility to estimate experimental errors from a single experimental data set formed by n experimental data is shown.


Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 104 ◽  
Author(s):  
Ahmed ◽  
Yigit ◽  
Isik ◽  
Alpkocak

Leukemia is a fatal cancer and has two main types: Acute and chronic. Each type has two more subtypes: Lymphoid and myeloid. Hence, in total, there are four subtypes of leukemia. This study proposes a new approach for diagnosis of all subtypes of leukemia from microscopic blood cell images using convolutional neural networks (CNN), which requires a large training data set. Therefore, we also investigated the effects of data augmentation for an increasing number of training samples synthetically. We used two publicly available leukemia data sources: ALL-IDB and ASH Image Bank. Next, we applied seven different image transformation techniques as data augmentation. We designed a CNN architecture capable of recognizing all subtypes of leukemia. Besides, we also explored other well-known machine learning algorithms such as naive Bayes, support vector machine, k-nearest neighbor, and decision tree. To evaluate our approach, we set up a set of experiments and used 5-fold cross-validation. The results we obtained from experiments showed that our CNN model performance has 88.25% and 81.74% accuracy, in leukemia versus healthy and multiclass classification of all subtypes, respectively. Finally, we also showed that the CNN model has a better performance than other wellknown machine learning algorithms.


2019 ◽  
Vol 8 (4) ◽  
pp. 9155-9158

Classification is a machine learning task which consists in predicting the set association of unclassified examples, whose label is not known, by the properties of examples in a representation learned earlier as of training examples, that label was known. Classification tasks contain a huge assortment of domains and real world purpose: disciplines such as medical diagnosis, bioinformatics, financial engineering and image recognition between others, where domain experts can use the model erudite to sustain their decisions. All the Classification Approaches proposed in this paper were evaluate in an appropriate experimental framework in R Programming Language and the major emphasis is on k-nearest neighbor method which supports vector machines and decision trees over large number of data sets with varied dimensionality and by comparing their performance against other state-of-the-art methods. In this process the experimental results obtained have been verified by statistical tests which support the better performance of the methods. In this paper we have survey various classification techniques of Data Mining and then compared them by using diverse datasets from “University of California: Irvine (UCI) Machine Learning Repository” for acquiring the accurate calculations on Iris Data set.


2019 ◽  
Vol 8 (4) ◽  
pp. 407-417
Author(s):  
Inas Hasimah ◽  
Moch. Abdul Mukid ◽  
Hasbi Yasin

House credit (KPR) is a credit facilities for buying or other comsumptive needs with house warranty. The warranty for KPR is the house that will be purchased. The warranty for KPR multiguna take over is the house that will be owned by debtor, and then debtor is taking over KPR to another financial institution. For fulfilled the credit to prospective debtor is done by passing through the process of credit application and credit analysis. With the credit analysis, will acknowledge the ability of debtor for repay a credit. Final decision of credit application is classified into approved and refused. k Nearest Neighbor by attributes weighting using Global Gini Diversity Index is a statistical method that can be used to classify the credit decision of prospective debtor. This research use 2443 data of KPR multiguna take over’s prospective debtor in 2018 with credit decision of prospective debtor as dependent variable and four selected independent variable such as home ownership status, job, loans amount, and income.  The best classification result of k-NN by Global Gini Diversity Index weighting is when using 80% training data set and 20% testing data set with k=7 obtained  APER value 0,0798 and accuracy 92,02%. Keywords: KPR Multiguna Take Over, Classification, KNN by Global Gini Diversity Index weighting, Evaluation of Classification


Author(s):  
Yeni Kustiyahningsih

The large number of cattle population that exists can increase the potential for developing cow disease. Lack of knowledge about various kinds of cattle diseases and their handling solutions is one of the causes of decreasing cow productivity. The aim of this research is to classify cattle disease quickly and accurately to assist cattle breeders in accelerating detection and handling of cattle disease. This study uses K-Nearest Neighbour (KNN) classification method with the F-Score feature selection. The KNN method is used for disease classification based on the distance between training data and test data, while F-Score feature selection is used to reduce the attribute dimensions in order to obtain the relevant attributes. The data set used was data on cattle disease in Madura with a total of 350 data consisting of 21 features and 7 classes. Data were broken down using K-fold Cross Validation using k = 5. Based on the test results, the best accuracy was obtained with the number of features = 18 and KNN (k = 3) which resulted in an accuracy of 94.28571, a recall of 0.942857 and a precision of 0.942857.


Author(s):  
Mahziyar Darvishi ◽  
Omid Ziaee ◽  
Arash Rahmati ◽  
Mohammad Silani

Numerous structure geometries are available for cellular structures, and selecting the suitable structure that reflects the intended characteristics is cumbersome. While testing many specimens for determining the mechanical properties of these materials could be time-consuming and expensive, finite element analysis (FEA) is considered an efficient alternative. In this study, we present a method to find the suitable geometry for the intended mechanical characteristics by implementing machine learning (ML) algorithms on FEA results of cellular structures. Different cellular structures of a given material are analyzed by FEA, and the results are validated with their corresponding analytical equations. The validated results are employed to create a data set used in the ML algorithms. Finally, by comparing the results with the correct answers, the most accurate algorithm is identified for the intended application. In our case study, the cellular structures are three widely used cellular structures as bone implants: Cube, Kelvin, and Rhombic dodecahedron, made of Ti–6Al–4V. The ML algorithms are simple Bayesian classification, K-nearest neighbor, XGBoost, random forest, and artificial neural network. By comparing the results of these algorithms, the best-performing algorithm is identified.


2013 ◽  
Vol 748 ◽  
pp. 590-594
Author(s):  
Li Liao ◽  
Yong Gang Lu ◽  
Xu Rong Chen

We propose a novel density estimation method using both the k-nearest neighbor (KNN) graph and the potential field of the data points to capture the local and global data distribution information respectively. The clustering is performed based on the computed density values. A forest of trees is built using each data point as the tree node. And the clusters are formed according to the trees in the forest. The new clustering method is evaluated by comparing with three popular clustering methods, K-means++, Mean Shift and DBSCAN. Experiments on two synthetic data sets and one real data set show that our approach can effectively improve the clustering results.


Sign in / Sign up

Export Citation Format

Share Document