Knee Joint Angle Monitoring System Based on Inertial Measurement Units for Human Gait Analysis

Author(s):  
J. J. Castañeda ◽  
A. F. Ruiz-Olaya ◽  
C. N. Lara-Herrera ◽  
F. Z. Roldán
Author(s):  
Pratima Saravanan ◽  
Jiyun Yao ◽  
Jessica Menold

Clinical gait analysis is used for diagnosing, assessing, and for monitoring a patient by analyzing their kinetics, kinematics and electromyography while walking. Traditionally, gait analysis is performed in a formal laboratory environment making use of several high-resolution cameras, either video or infrared. The subject is asked to walk on a force platform or a treadmill with several markers attached to their body, allowing cameras to capture the joint coordinates across time. The space required for such a laboratory is non-trivial and often the associated costs of such an experimental setup is prohibitively expensive. The current work aims to investigate the coupled use of a Microsoft Kinect and Inertial Measurement Units as a portable and cost-efficient gait analysis system. Past studies on assessing gait using either Kinect or Inertial Measurement Units concluded that they achieve medium reliability individually due to some drawbacks related to each sensor. In this study, we propose that a combined system is efficient in detecting different phases of human gait, and the combination of sensors complement each other by overcoming the individual sensor drawbacks. Preliminary findings indicate that the IMU sensors are efficient in providing gait kinematics such as step length, stride length, velocity, cadence, etc., whereas the Kinect sensor helps in studying the gait asymmetries by comparing the right and left joint, such as hips, knees, and ankle.


2019 ◽  
Vol 6 ◽  
pp. 205566831986854 ◽  
Author(s):  
Rob Argent ◽  
Sean Drummond ◽  
Alexandria Remus ◽  
Martin O’Reilly ◽  
Brian Caulfield

Introduction Joint angle measurement is an important objective marker in rehabilitation. Inertial measurement units may provide an accurate and reliable method of joint angle assessment. The objective of this study was to assess whether a single sensor with the application of machine learning algorithms could accurately measure hip and knee joint angle, and investigate the effect of inertial measurement unit orientation algorithms and person-specific variables on accuracy. Methods Fourteen healthy participants completed eight rehabilitation exercises with kinematic data captured by a 3D motion capture system, used as the reference standard, and a wearable inertial measurement unit. Joint angle was calculated from the single inertial measurement unit using four machine learning models, and was compared to the reference standard to evaluate accuracy. Results Average root-mean-squared error for the best performing algorithms across all exercises was 4.81° (SD = 1.89). The use of an inertial measurement unit orientation algorithm as a pre-processing step improved accuracy; however, the addition of person-specific variables increased error with average RMSE 4.99° (SD = 1.83°). Conclusions Hip and knee joint angle can be measured with a good degree of accuracy from a single inertial measurement unit using machine learning. This offers the ability to monitor and record dynamic joint angle with a single sensor outside of the clinic.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 229 ◽  
Author(s):  
Alexis Fortin-Côté ◽  
Jean-Sébastien Roy ◽  
Laurent Bouyer ◽  
Philip Jackson ◽  
Alexandre Campeau-Lecours

Inertial measurement units have recently shown great potential for the accurate measurement of joint angle movements in replacement of motion capture systems. In the race towards long duration tracking, inertial measurement units increasingly aim to ensure portability and long battery life, allowing improved ecological studies. Their main advantage over laboratory grade equipment is their usability in a wider range of environment for greater ecological value. For accurate and useful measurements, these types of sensors require a robust orientation estimation that remains accurate over long periods of time. To this end, we developed the Allumo software for the preprocessing and calibration of the orientation estimate of triaxial accelerometers. This software has an automatic orientation calibration procedure, an automatic erroneous orientation-estimate detection and useful visualization to help process long and short measurement periods. These automatic procedures are detailed in this paper, and two case studies are presented to showcase the usefulness of the software. The Allumo software is open-source and available online.


Sign in / Sign up

Export Citation Format

Share Document