Surface Vibration of a Layered Saturated Ground Subjected to an Embedded Moving Load

Author(s):  
Anfeng Hu ◽  
Yijun Li ◽  
Bo Sun ◽  
Kanghe Xie
2020 ◽  
Vol 3 (8) ◽  
pp. 28-34
Author(s):  
N. V. IVANITSKAYA ◽  
◽  
A. K. BAYBULOV ◽  
M. V. SAFRONCHUK ◽  
◽  
...  

In many countries economic policy has been paying increasing attention to the modernization and development of transport infrastructure as a measure of macroeconomic stimulation. Tunnels as an important component of transport infrastructure save a lot of logistical costs. It stimulates increasing freight and passenger traffic as well as the risks of the consequences of unforeseen overloads. The objective of the paper is to suggest the way to reduce operational risks of unforeseen moving load by modeling of the stress-strain state of a transport tunnel under growing load for different conditions and geophysical parameters. The article presents the results of a study of the stress-strain state (SSS) of a transport tunnel exposed to a mobile surface load. Numerical experiments carried out in the ANSYS software package made it possible to obtain diagrams showing the distribution of equivalent stresses (von Mises – stresses) according to the finite element model of the tunnel. The research results give grounds to assert that from external factors the stress state of the tunnel is mainly influenced by the distance to the moving load. The results obtained make it possible to predict in advance the parameters of the stress-strain state in the near-contour area of the tunnel and use the results in the subsequent design of underground facilities, as well as to increase their reliability and operational safety. This investigation gives an opportunity not only to reduce operational risks at the design stage, but to choose an optimal balance between investigation costs and benefits of safety usage period prolongation.


2021 ◽  
pp. 146808742098819
Author(s):  
Wang Yang ◽  
Cheng Yong

As a non-intrusive method for engine working condition detection, the engine surface vibration contains rich information about the combustion process and has great potential for the closed-loop control of engines. However, the measured engine surface vibration signals are usually induced by combustion as well as non-combustion excitations and are difficult to be utilized directly. To evaluate some combustion parameters from engine surface vibration, the tests were carried out on a single-cylinder diesel engine and a new method called Fourier Decomposition Method (FDM) was used to extract combustion induced vibration. Simulated and test results verified the ability of the FDM for engine vibration analysis. Based on the extracted vibration signals, the methods for identifying start of combustion, location of maximum pressure rise rate, and location of peak pressure were proposed. The cycle-by-cycle analysis of the results show that the parameters identified based on vibration and in-cylinder pressure have the similar trends, and it suggests that the proposed FDM-based methods can be used for extracting combustion induced vibrations and identifying the combustion parameters.


PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Helmut J. Holl ◽  
Lukas Keplinger
Keyword(s):  

2021 ◽  
pp. 108128652110238
Author(s):  
Barış Erbaş ◽  
Julius Kaplunov ◽  
Isaac Elishakoff

A two-dimensional mixed problem for a thin elastic strip resting on a Winkler foundation is considered within the framework of plane stress setup. The relative stiffness of the foundation is supposed to be small to ensure low-frequency vibrations. Asymptotic analysis at a higher order results in a one-dimensional equation of bending motion refining numerous ad hoc developments starting from Timoshenko-type beam equations. Two-term expansions through the foundation stiffness are presented for phase and group velocities, as well as for the critical velocity of a moving load. In addition, the formula for the longitudinal displacements of the beam due to its transverse compression is derived.


2004 ◽  
Vol 269 (3-5) ◽  
pp. 511-534 ◽  
Author(s):  
Jong-Shyong Wu ◽  
Lieh-Kwang Chiang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document