Self-Similarity, Distortion Waves, and the Essence of Morphogenesis: A Generalized View of Color Pattern Formation in Butterfly Wings

Author(s):  
Joji M. Otaki
Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 39
Author(s):  
Joji M. Otaki

The nymphalid groundplan is an archetypical color pattern of nymphalid butterflies involving three major symmetry systems and a discal symmetry system, which share the basic morphogenesis unit. Here, the morphological and spatial relationships among these symmetry systems were studied based on cross-species comparisons of nymphalid hindwings. Based on findings in Neope and Symbrenthia, all three major symmetry systems can be expressed as bands, spots, or eyespot-like structures, suggesting equivalence (homology) of these systems in developmental potential. The discal symmetry system can also be expressed as various structures. The discal symmetry system is circularly surrounded by the central symmetry system, which may then be surrounded by the border and basal symmetry systems, based mainly on findings in Agrias, indicating a unified supersymmetry system covering the entire wing. The border symmetry system can occupy the central part of the wing when the central symmetry system is compromised, as seen in Callicore. These results suggest that butterfly color patterns are hierarchically constructed in a self-similar fashion, as the fractal geometry of the nymphalid groundplan. This self-similarity is likely mediated by the serial induction of organizers, and symmetry breaking of the system morphology may be generated by the collision of opposing signals during development.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 195 ◽  
Author(s):  
Joji Otaki

Butterfly eyespot color patterns have been studied using several different approaches, including applications of physical damage to the forewing. Here, damage and distortion experiments were performed, focusing on the hindwing eyespots of the blue pansy butterfly Junonia orithya. Physical puncture damage with a needle at the center of the eyespot reduced the eyespot size. Damage at the eyespot outer rings not only deformed the entire eyespot, but also diminished the eyespot core disk size, despite the distance from the damage site to the core disk. When damage was inflicted near the eyespot, the eyespot was drawn toward the damage site. The induction of an ectopic eyespot-like structure and its fusion with the innate eyespots were observed when damage was inflicted in the background area. When a small stainless ball was placed in close proximity to the eyespot using the forewing-lift method, the eyespot deformed toward the ball. Taken together, physical damage and distortion elicited long-range inhibitory, drawing (attracting), and inducing effects, suggesting that the innate and induced morphogenic signals travel long distances and interact with each other. These results are consistent with the distortion hypothesis, positing that physical distortions of wing tissue contribute to color pattern determination in butterfly wings.


1950 ◽  
Vol 114 (3) ◽  
pp. 603-625 ◽  
Author(s):  
H. B. Goodrich ◽  
Ruth L. Hine ◽  
Jack Reynolds

2021 ◽  
Vol 9 ◽  
Author(s):  
Ricardo Mallarino ◽  
Marie Manceau ◽  
Marcus Kronforst

Sign in / Sign up

Export Citation Format

Share Document