scholarly journals Long-Range Effects of Wing Physical Damage and Distortion on Eyespot Color Patterns in the Hindwing of the Blue Pansy Butterfly Junonia orithya

Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 195 ◽  
Author(s):  
Joji Otaki

Butterfly eyespot color patterns have been studied using several different approaches, including applications of physical damage to the forewing. Here, damage and distortion experiments were performed, focusing on the hindwing eyespots of the blue pansy butterfly Junonia orithya. Physical puncture damage with a needle at the center of the eyespot reduced the eyespot size. Damage at the eyespot outer rings not only deformed the entire eyespot, but also diminished the eyespot core disk size, despite the distance from the damage site to the core disk. When damage was inflicted near the eyespot, the eyespot was drawn toward the damage site. The induction of an ectopic eyespot-like structure and its fusion with the innate eyespots were observed when damage was inflicted in the background area. When a small stainless ball was placed in close proximity to the eyespot using the forewing-lift method, the eyespot deformed toward the ball. Taken together, physical damage and distortion elicited long-range inhibitory, drawing (attracting), and inducing effects, suggesting that the innate and induced morphogenic signals travel long distances and interact with each other. These results are consistent with the distortion hypothesis, positing that physical distortions of wing tissue contribute to color pattern determination in butterfly wings.

Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 39
Author(s):  
Joji M. Otaki

The nymphalid groundplan is an archetypical color pattern of nymphalid butterflies involving three major symmetry systems and a discal symmetry system, which share the basic morphogenesis unit. Here, the morphological and spatial relationships among these symmetry systems were studied based on cross-species comparisons of nymphalid hindwings. Based on findings in Neope and Symbrenthia, all three major symmetry systems can be expressed as bands, spots, or eyespot-like structures, suggesting equivalence (homology) of these systems in developmental potential. The discal symmetry system can also be expressed as various structures. The discal symmetry system is circularly surrounded by the central symmetry system, which may then be surrounded by the border and basal symmetry systems, based mainly on findings in Agrias, indicating a unified supersymmetry system covering the entire wing. The border symmetry system can occupy the central part of the wing when the central symmetry system is compromised, as seen in Callicore. These results suggest that butterfly color patterns are hierarchically constructed in a self-similar fashion, as the fractal geometry of the nymphalid groundplan. This self-similarity is likely mediated by the serial induction of organizers, and symmetry breaking of the system morphology may be generated by the collision of opposing signals during development.


1988 ◽  
Vol 62 (01) ◽  
pp. 83-87 ◽  
Author(s):  
Patricia H. Kelley ◽  
Charles T. Swann

The excellent preservation of the molluscan fauna from the Gosport Sand (Eocene) at Little Stave Creek, Alabama, has made it possible to describe the preserved color patterns of 15 species. In this study the functional significance of these color patterns is tested in the context of the current adaptationist controversy. The pigment of the color pattern is thought to be a result of metabolic waste disposal. Therefore, the presence of the pigment is functional, although the patterns formed by the pigment may or may not have been adaptive. In this investigation the criteria proposed by Seilacher (1972) for testing the functionality of color patterns were applied to the Gosport fauna and the results compared with life mode as interpreted from knowledge of extant relatives and functional morphology. Using Seilacher's criteria of little ontogenetic and intraspecific variability, the color patterns appear to have been functional. However, the functional morphology studies indicate an infaunal life mode which would preclude functional color patterns. Particular color patterns are instead interpreted to be the result of historical factors, such as multiple adaptive peaks or random fixation of alleles, or of architectural constraints including possibly pleiotropy or allometry. The low variability of color patterns, which was noted within species and genera, suggests that color patterns may also serve a useful taxonomic purpose.


2019 ◽  
Vol 36 (12) ◽  
pp. 2842-2853 ◽  
Author(s):  
Nicholas W VanKuren ◽  
Darli Massardo ◽  
Sumitha Nallu ◽  
Marcus R Kronforst

Abstract Some genes have repeatedly been found to control diverse adaptations in a wide variety of organisms. Such gene reuse reveals not only the diversity of phenotypes these unique genes control but also the composition of developmental gene networks and the genetic routes available to and taken by organisms during adaptation. However, the causes of gene reuse remain unclear. A small number of large-effect Mendelian loci control a huge diversity of mimetic butterfly wing color patterns, but reasons for their reuse are difficult to identify because the genetic basis of mimicry has primarily been studied in two systems with correlated factors: female-limited Batesian mimicry in Papilio swallowtails (Papilionidae) and non-sex-limited Müllerian mimicry in Heliconius longwings (Nymphalidae). Here, we break the correlation between phylogenetic relationship and sex-limited mimicry by identifying loci controlling female-limited mimicry polymorphism Hypolimnas misippus (Nymphalidae) and non-sex-limited mimicry polymorphism in Papilio clytia (Papilionidae). The Papilio clytia polymorphism is controlled by the genome region containing the gene cortex, the classic P supergene in Heliconius numata, and loci controlling color pattern variation across Lepidoptera. In contrast, female-limited mimicry polymorphism in Hypolimnas misippus is associated with a locus not previously implicated in color patterning. Thus, although many species repeatedly converged on cortex and its neighboring genes over 120 My of evolution of diverse color patterns, female-limited mimicry polymorphisms each evolved using a different gene. Our results support conclusions that gene reuse occurs mainly within ∼10 My and highlight the puzzling diversity of genes controlling seemingly complex female-limited mimicry polymorphisms.


2005 ◽  
Vol 168 (5) ◽  
pp. 691-696 ◽  
Author(s):  
Etsuko Muto ◽  
Hiroyuki Sakai ◽  
Kuniyoshi Kaseda

Interaction of kinesin-coated latex beads with a single microtubule (MT) was directly observed by fluorescence microscopy. In the presence of ATP, binding of a kinesin bead to the MT facilitated the subsequent binding of other kinesin beads to an adjacent region on the MT that extended for micrometers in length. This cooperative binding was not observed in the presence of ADP or 5′-adenylylimidodiphosphate (AMP-PNP), where binding along the MT was random. Cooperative binding also was induced by an engineered, heterodimeric kinesin, WT/E236A, that could hydrolyze ATP, yet remained fixed on the MT in the presence of ATP. Relative to the stationary WT/E236A kinesin on a MT, wild-type kinesin bound preferentially in close proximity, but was biased to the plus-end direction. These results suggest that kinesin binding and ATP hydrolysis may cause a long-range state transition in the MT, increasing its affinity for kinesin toward its plus end. Thus, our study highlights the active involvement of MTs in kinesin motility.


2019 ◽  
Author(s):  
Drew C. Wham ◽  
Briana Ezray ◽  
Heather M. Hines

ABSTRACTA wide range of research relies upon the accurate and repeatable measurement of the degree to which organisms resemble one another. Here, we present an unsupervised workflow for analyzing the relationships between organismal color patterns. This workflow utilizes several recent advancements in deep learning based computer vision techniques to calculate perceptual distance. We validate this approach using previously published datasets surrounding diverse applications of color pattern analysis including mimicry, population differentiation, heritability, and development. We demonstrate that our approach is able to reproduce the biologically relevant color pattern relationships originally reported in these studies. Importantly, these results are achieved without any task-specific training. In many cases, we were able to reproduce findings directly from original photographs or plates with minimum standardization, avoiding the need for intermediate representations such as a cartoonized images or trait matrices. We then present two artificial datasets designed to highlight how this approach handles aspects of color patterns, such as changes in pattern location and the perception of color contrast. These results suggest that this approach will generalize well to support the study of a wide range of biological processes in a diverse set of taxa while also accommodating a variety of data formats, preprocessing techniques, and study designs.


Sign in / Sign up

Export Citation Format

Share Document