Insights into eyespot color-pattern formation mechanisms from color gradients, boundary scales, and rudimentary eyespots in butterfly wings

2019 ◽  
Vol 114 ◽  
pp. 68-82 ◽  
Author(s):  
Masaki Iwata ◽  
Joji M. Otaki
2003 ◽  
Vol 13 (05) ◽  
pp. 1055-1161 ◽  
Author(s):  
MAKOTO ITOH ◽  
LEON O. CHUA

In this paper, canonical isolated CNN cell models are proposed by using implicit differential equations. A number of equivalent but distinct CNN cell models are derived from these canonical models. Almost every known CNN cell model can be classified into one or more groups via constrained conditions. This approach is also applied to discrete-time CNN cell models. Pattern formation mechanisms are investigated from the viewpoint of equivalent templates and genetic algorithms. A strange wave propagation phenomenon in nonuniform CNN cells is also presented in this paper. Finally, chaotic associative memories are proposed.


Development ◽  
1989 ◽  
Vol 107 (1) ◽  
pp. 69-76 ◽  
Author(s):  
E. Salo ◽  
J. Baguna

In planarians, blastema cells do not divide, and growth blastema is thought to result from the steady wound epithelium, of undifferentiated cells produced in the stump. However, whether these cells come only sources or whether cells placed far from the wound can participate, after long-range migrations, in the still uncertain. To study this problem, we have parameters of the process of regeneration: cell growth; number of cells produced by mitosis in the wound (postblastema); and rates of movement undifferentiated cells using grafting procedures with chromosomal markers. The results show that: (1) cells area spread (move) at higher rates than cells placed (90–140_mday-1 versus 40–50_mday-1); (2) cells than 500_m from the wound boundary are hardly 5-day-old blastemata; and (3) the number of cells within a 200–300_m postblastema area around the wound explain, provided their rates of movement are taken increasing number of blastema cells. From this, it is blastema cells in planarians originate from local mitotic activity jointly with local cell movement postblastema area around the wound match the blastema cells during regeneration. The implications for blastema growth and pattern formation mechanisms


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 195 ◽  
Author(s):  
Joji Otaki

Butterfly eyespot color patterns have been studied using several different approaches, including applications of physical damage to the forewing. Here, damage and distortion experiments were performed, focusing on the hindwing eyespots of the blue pansy butterfly Junonia orithya. Physical puncture damage with a needle at the center of the eyespot reduced the eyespot size. Damage at the eyespot outer rings not only deformed the entire eyespot, but also diminished the eyespot core disk size, despite the distance from the damage site to the core disk. When damage was inflicted near the eyespot, the eyespot was drawn toward the damage site. The induction of an ectopic eyespot-like structure and its fusion with the innate eyespots were observed when damage was inflicted in the background area. When a small stainless ball was placed in close proximity to the eyespot using the forewing-lift method, the eyespot deformed toward the ball. Taken together, physical damage and distortion elicited long-range inhibitory, drawing (attracting), and inducing effects, suggesting that the innate and induced morphogenic signals travel long distances and interact with each other. These results are consistent with the distortion hypothesis, positing that physical distortions of wing tissue contribute to color pattern determination in butterfly wings.


2020 ◽  
Vol 460 (1) ◽  
pp. 1
Author(s):  
Patrick Müller ◽  
Ezzat El-Sherif

1950 ◽  
Vol 114 (3) ◽  
pp. 603-625 ◽  
Author(s):  
H. B. Goodrich ◽  
Ruth L. Hine ◽  
Jack Reynolds

Sign in / Sign up

Export Citation Format

Share Document