Speed Regulation of a Non-linear Separately Excited DC Motor Using Optimized Fuzzy Logic Control

Author(s):  
Arpit Jain ◽  
Piyush Kuchhal ◽  
Mukul Kumar Gupta
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Arpit Jain ◽  
Abhinav Sharma ◽  
Vibhu Jately ◽  
Brian Azzopardi ◽  
Sushabhan Choudhury

Author(s):  
Desi Fatkhi Azizah ◽  
Khen Dedes ◽  
Agung Bella Putra Utama ◽  
Aripriharta

Jurnal Teknik ◽  
2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Sumardi Sadi

DC motors are included in the category of motor types that are most widely used both in industrial environments, household appliances to children's toys. The development of control technology has also made many advances from conventional control to automatic control to intelligent control. Fuzzy logic is used as a control system, because this control process is relatively easy and flexible to design without involving complex mathematical models of the system to be controlled. The purpose of this research is to study and apply the fuzzy mamdani logic method to the Arduino uno microcontroller, to control the speed of a DC motor and to control the speed of the fan. The research method used is an experimental method. Global testing is divided into three, namely sensor testing, Pulse Width Modulation (PWM) testing and Mamdani fuzzy logic control testing. The fuzzy controller output is a control command given to the DC motor. In this DC motor control system using the Mamdani method and the control system is designed using two inputs in the form of Error and Delta Error. The two inputs will be processed by the fuzzy logic controller (FLC) to get the output value in the form of a PWM signal to control the DC motor. The results of this study indicate that the fuzzy logic control system with the Arduino uno microcontroller can control the rotational speed of the DC motor as desired.


2017 ◽  
Vol 36 (2) ◽  
pp. 594 ◽  
Author(s):  
I. H. Usoro ◽  
U. T. Itaketo ◽  
M. A. Umoren

Sign in / Sign up

Export Citation Format

Share Document