A Three-Dimensional Axisymmetric Arc Sliding Method for Checking Basal Heave Stability of Circular Foundation Pits

Author(s):  
Ming-ju Zhang ◽  
Zhen-bo Zhang ◽  
Meng Yang
Symmetry ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 179 ◽  
Author(s):  
Mingju Zhang ◽  
Zhenbo Zhang ◽  
Zheng Li ◽  
Pengfei Li

2020 ◽  
Vol 46 (3) ◽  
pp. 214-220
Author(s):  
Hui Qie ◽  
Lingliang Kong ◽  
Fan Zhang ◽  
Chenxi Li ◽  
Lin Lu ◽  
...  

This study aims to elucidate the biomechanical effects of combined loading of maxillary anterior and posterior implants using the sliding method on en-masse retraction of the anterior teeth and to quantify the loading ratio (LR) of anterior and posterior implants to achieve controlled retraction of the maxillary anterior teeth. A three-dimensional finite element model of the maxilla-upper dentition appliance was constructed. Implants were placed on the distal (A) and mesial (B) sides of the lateral incisors as well as on the mesial (C) side of the first molar and different amounts of force were loaded between the implants using 2- or 5-mm traction hooks. The labiolingual movement of the anterior teeth was recorded and the relationship between the LR of the implants and the movement of the central incisors was evaluated. With 2-mm traction hooks, the central incisors exhibited a translation tendency during retraction at lower A/C and B/C LR and labial or lingual crown inclination at higher values. With 5-mm traction hooks, the central incisors, lateral incisors, and canine teeth exhibited a labial crown inclination. The results of this study suggest that 2-mm traction hooks can cause labial crown inclination, translation tendency during retraction, or lingual crown inclination of the central incisors due to alterations in the LR of the anterior and posterior implants. The central incisors only exhibited labial crown inclination during combined loading of the anterior and posterior implants when 5-mm traction hooks were used.


1966 ◽  
Vol 25 ◽  
pp. 227-229 ◽  
Author(s):  
D. Brouwer

The paper presents a summary of the results obtained by C. J. Cohen and E. C. Hubbard, who established by numerical integration that a resonance relation exists between the orbits of Neptune and Pluto. The problem may be explored further by approximating the motion of Pluto by that of a particle with negligible mass in the three-dimensional (circular) restricted problem. The mass of Pluto and the eccentricity of Neptune's orbit are ignored in this approximation. Significant features of the problem appear to be the presence of two critical arguments and the possibility that the orbit may be related to a periodic orbit of the third kind.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
Lee D. Peachey ◽  
Clara Franzini-Armstrong

The effective study of biological tissues in thick slices of embedded material by high voltage electron microscopy (HVEM) requires highly selective staining of those structures to be visualized so that they are not hidden or obscured by other structures in the image. A tilt pair of micrographs with subsequent stereoscopic viewing can be an important aid in three-dimensional visualization of these images, once an appropriate stain has been found. The peroxidase reaction has been used for this purpose in visualizing the T-system (transverse tubular system) of frog skeletal muscle by HVEM (1). We have found infiltration with lanthanum hydroxide to be particularly useful for three-dimensional visualization of certain aspects of the structure of the T- system in skeletal muscles of the frog. Specifically, lanthanum more completely fills the lumen of the tubules and is denser than the peroxidase reaction product.


Sign in / Sign up

Export Citation Format

Share Document