Molecular Composites Based on Ionic Liquids

Author(s):  
Zhou Yu ◽  
Rui Qiao
Author(s):  
W.W. Adams ◽  
S. J. Krause

Rigid-rod polymers such as PBO, poly(paraphenylene benzobisoxazole), Figure 1a, are now in commercial development for use as high-performance fibers and for reinforcement at the molecular level in molecular composites. Spinning of liquid crystalline polyphosphoric acid solutions of PBO, followed by washing, drying, and tension heat treatment produces fibers which have the following properties: density of 1.59 g/cm3; tensile strength of 820 kpsi; tensile modulus of 52 Mpsi; compressive strength of 50 kpsi; they are electrically insulating; they do not absorb moisture; and they are insensitive to radiation, including ultraviolet. Since the chain modulus of PBO is estimated to be 730 GPa, the high stiffness also affords the opportunity to reinforce a flexible coil polymer at the molecular level, in analogy to a chopped fiber reinforced composite. The objectives of the molecular composite concept are to eliminate the thermal expansion coefficient mismatch between the fiber and the matrix, as occurs in conventional composites, to eliminate the interface between the fiber and the matrix, and, hopefully, to obtain synergistic effects from the exceptional stiffness of the rigid-rod molecule. These expectations have been confirmed in the case of blending rigid-rod PBZT, poly(paraphenylene benzobisthiazole), Figure 1b, with stiff-chain ABPBI, poly 2,5(6) benzimidazole, Fig. 1c A film with 30% PBZT/70% ABPBI had tensile strength 190 kpsi and tensile modulus of 13 Mpsi when solution spun from a 3% methane sulfonic acid solution into a film. The modulus, as predicted by rule of mixtures, for a film with this composition and with planar isotropic orientation, should be 16 Mpsi. The experimental value is 80% of the theoretical value indicating that the concept of a molecular composite is valid.


2011 ◽  
pp. 110923034559006
Author(s):  
Arnd Garsuch ◽  
D. Michael Badine ◽  
Klaus Leitner ◽  
Luiz H. S. Gasparotto ◽  
Natalia Borisenko ◽  
...  

2020 ◽  
Vol 42 (3) ◽  
pp. 218-225
Author(s):  
T.T. Alekseeva ◽  
◽  
N.V. Kozak ◽  
N.V. Yarova ◽  
◽  
...  
Keyword(s):  

2016 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
Siti Nabihah Jamaludin ◽  
Ruzitah Mohd Salleh

Anthropogenic CO2 emissions has led to global climate change and widely contributed to global warming since its concentration has been increasing over time. It has attracted vast attention worldwide. Currently, the different CO2 capture technologies available include absorption, solid adsorption and membrane separation. Chemical absorption technology is regarded as the most mature technology and is commercially used in the industry. However, the key challenge is to find the most efficient solvent in capturing CO2. This paper reviews several types of CO2 capture technologies and the various factors influencing the CO2 absorption process, resulting in the development of a novel solvent for CO2 capture.


Author(s):  
Mahesh G. Kharatmol ◽  
Deepali Jagdale

Pyrazoline class of compounds serve as better moieties for an array of treatments, they have antibacterial, antifungal, antiinflammatory, antipyretic, diuretic, cardiovascular activities. Apart from these they also have anticancer activities. So, pertaining to its importance, many attempts are made to synthesize pyrazolines. Since conventional methods of organic synthesis are energy and time consuming. There are elaborate pathways for green and eco-friendly synthesis of pyrazoline derivatives including microwave irradiation, ultrasonic irradiation, grinding and use of ionic liquids which assures the synthesis of the same within much lesser time and by use of minimal energy


Sign in / Sign up

Export Citation Format

Share Document