Research Trends of Carbon Dioxide Capture using Ionic Liquids and Aqueous Amine-Ionic Liquids Mixtures

2016 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
Siti Nabihah Jamaludin ◽  
Ruzitah Mohd Salleh

Anthropogenic CO2 emissions has led to global climate change and widely contributed to global warming since its concentration has been increasing over time. It has attracted vast attention worldwide. Currently, the different CO2 capture technologies available include absorption, solid adsorption and membrane separation. Chemical absorption technology is regarded as the most mature technology and is commercially used in the industry. However, the key challenge is to find the most efficient solvent in capturing CO2. This paper reviews several types of CO2 capture technologies and the various factors influencing the CO2 absorption process, resulting in the development of a novel solvent for CO2 capture.

2016 ◽  
Vol 13 (1) ◽  
pp. 53
Author(s):  
Siti Nabihah Jamaludin ◽  
Ruzitah Mohd Salleh

Anthropogenic CO2 emissions has led to global climate change and widely contributed to global warming since its concentration has been increasing over time. It has attracted vast attention worldwide. Currently, the different CO2 capture technologies available include absorption, solid adsorption and membrane separation. Chemical absorption technology is regarded as the most mature technology and is commercially used in the industry. However, the key challenge is to find the most efficient solvent in capturing CO2. This paper reviews several types of CO2 capture technologies and the various factors influencing the CO2 absorption process, resulting in the development of a novel solvent for CO2 capture.


2017 ◽  
Vol 19 (2) ◽  
pp. 1134-1142 ◽  
Author(s):  
Xiaowei An ◽  
Xiao Du ◽  
Donghong Duan ◽  
Lijuan Shi ◽  
Xiaogang Hao ◽  
...  

A series of new hydroxypyridine-based ionic liquids (ILs) are synthesized and applied in CO2 capture through chemical absorption.


Author(s):  
Ravinder Kumar ◽  
Mohammad Hossein Ahmadi ◽  
Dipen Kumar Rajak ◽  
Mohammad Alhuyi Nazari

Abstract Greenhouse gases emissions from large scale industries as well as gasoline based vehicles are mainly responsible for global warming since the 1980s. At present, it has triggered global efforts to reduce the level of GHG. The contribution of carbon dioxide (CO2) in polluting the environment is at a peak due to the excessive use of coal in power plants. So, serious attention is required to reduce the level of CO2 using advanced technologies. Carbon dioxide capture and storage may play an important role in this direction. In process industries, various carbon dioxide capture techniques can be used to reduce CO2 emissions. However, post-combustion carbon dioxide capture is on top priority. Nowadays the researcher is focusing their work on CO2 capture using hybrid solvent. This work highlights a review of carbon dioxide capture using various kind of hybrid solvent in a packed column. The various challenges for absorption efficiency enhancement and future direction are also discussed in the present work. It is concluded through the literature survey that hybrid solvent shows better efficiency in comparison to the aqueous solution used for CO2 capture.


Author(s):  
Ana R. Diaz

The tendency in the world energy demand seems clear: it can only grow. The energetic industry will satisfy this demand-despite all its dialectic about new technologies-at least medium term mostly with current fossil fuel technologies. In this picture from an engineer’s point of view, one of the primary criterions for mitigating the effects of increasing atmospheric concentration of CO2 is to restrict the CO2 fossil fuel emissions into the atmosphere. This paper is focused on the analysis of different CO2 capture technologies for power plants. Indeed, one of the most important goal to concentrate on is the CO2 capture energy requirements, as it dictates the net size of the power plant and, hence, the net cost of power generation with CO2 avoidance technologies. Here, the Author presents a critical review of different CO2 absorption capture technologies. These technologies have been widely analyzed in the literature under chemical and economic points of view, leaving their impact on the energy power plant performance in a second plan. Thus, the central question examined in this paper is the connection between abatement capability and its energetic requirements, which seriously decrease power generation efficiency. Evidencing that the CO2 capture needs additional technical effort and establishing that further developments in this area must be constrained by reducing its energy requirements. After a comprehensive literature revision, six different chemical absorption methods are analyzed based on a simplified energetic model, in order to account for its energetic costs. Furthermore, an application case study is provided where the different CO2 capture systems studied are coupled to a natural gas cogeneration power plant.


2011 ◽  
Vol 347-353 ◽  
pp. 116-119
Author(s):  
Qiang Wei Li ◽  
Yi Zhao ◽  
Li Dong Wang

Subscript textCO2 emission control is an important issue, in which chemical absorption process has reached the widest application. Ionic liquid is a kind of green solvent and expected to take the place of traditional amine absorbents as for its better characteristics. In this paper, two iminazole base ionic liquids were synthesized, including of bromide 1-butyl-3-methylimidazo ([bmim]Br) and 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6). The performance of CO2 absorption by [bmim]PF6 and [bmim]Br were compared under the same other conditions. Subscript textIt indicates that [bmim]PF6 has more absorption capacity and less saturated absorption time under low temperature, which provides reference for CO2 control by ionic liquid.


Author(s):  
M. I. Lamas Galdo ◽  
J. D. Rodriguez García ◽  
J. M. Rebollido Lorenzo

CO2 is the main anthropogenic greenhouse gas and its reduction plays a decisive role in reducing global climate change. As a CO2 elimination method, the present work is based on chemical absorption using aqueous ammonia as solvent. A CFD (computational fluid dynamics) model was developed to study CO2 capture in a single droplet. The objective was to identify the main mechanisms responsible for CO2 absorption, such as diffusion, solubility, convection, chemical dissociation, and evaporation. The proposed CFD model takes into consideration the fluid motion inside and outside the droplet. It was found that diffusion prevails over convection, especially for small droplets. Chemical reactions increase the absorption by up to 472.7% in comparison with physical absorption alone, and evaporation reduces the absorption up to 41.9% for the parameters studied in the present work.


2009 ◽  
Vol 62 (4) ◽  
pp. 298 ◽  
Author(s):  
Junhua Huang ◽  
Thomas Rüther

As the climate debate is hotting up, so is the (re)search for finding powerful new materials for the efficient and cost-effective removal of CO2 from flue-gas streams from power plants and other emission sources. Ionic liquids (ILs), exhibiting higher CO2 solubility than conventional organic solvents, have received considerable interest as new CO2 absorbents. The present paper evaluates the advantages and disadvantages of ILs, and provides an overview of the recent developments of ILs for CO2 capture. In conventional ILs, CO2 is absorbed by occupying the free space between the ions through physical absorption mechanisms. As another promising strategy, task-specific ILs have been studied that, by attaching functional groups to the ions, allow the formation of chemical bonds to improve the overall absorption capacity during the CO2 capture process. Other strategies include using ILs as reaction media or as selective absorption materials.


Sign in / Sign up

Export Citation Format

Share Document