Aerosol Influences on Cloud Modification and Rainfall Suppression in the South Asian Monsoon Region

Author(s):  
Prashant Dave ◽  
Nitin Patil ◽  
Mani Bhushan ◽  
Chandra Venkataraman
2018 ◽  
Vol 123 (11) ◽  
pp. 5927-5946 ◽  
Author(s):  
Clay R. Tabor ◽  
Bette L. Otto-Bliesner ◽  
Esther C. Brady ◽  
Jesse Nusbaumer ◽  
Jiang Zhu ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1462
Author(s):  
Birgit Hassler ◽  
Axel Lauer

Precipitation is a key component of the hydrological cycle and one of the most important variables in weather and climate studies. Accurate and reliable precipitation data are crucial for determining climate trends and variability. In this study, eleven different precipitation datasets are compared, six reanalysis and five observational datasets, including the reanalysis datasets ERA5 and WFDE5 from the ECMWF family, to quantify the differences between the widely used precipitation datasets and to identify their particular strengths and shortcomings. The comparisons are focused on the common time period 1983 through 2016 and on monthly, seasonal, and inter-annual times scales in regions representing different precipitation regimes, i.e., the Tropics, the Pacific Inter Tropical Convergence Zone (ITCZ), Central Europe, and the South Asian Monsoon region. For the analysis, satellite-gauge precipitation data from the Global Precipitation Climatology Project (GPCP-SG) are used as a reference. The comparison shows that ERA5 and ERA5-Land are a clear improvement over ERA-Interim and show in most cases smaller biases than the other reanalysis datasets (e.g., around 13% high bias in the Tropics compared to 17% for MERRA-2 and 36% for JRA-55). ERA5 agrees well with observations for Central Europe and the South Asian Monsoon region but underestimates very low precipitation rates in the Tropics. In particular, the tropical ocean remains challenging for reanalyses with three out of four products overestimating precipitation rates over the Atlantic and Indian Ocean.


2002 ◽  
Vol 15 (20) ◽  
pp. 2862-2880 ◽  
Author(s):  
Man Li C. Wu ◽  
Siegfried Schubert ◽  
In-Sik Kang ◽  
Duane Waliser

2014 ◽  
Vol 27 (17) ◽  
pp. 6612-6626 ◽  
Author(s):  
Xiushu Qie ◽  
Xueke Wu ◽  
Tie Yuan ◽  
Jianchun Bian ◽  
Daren Lu

Abstract Diurnal and seasonal variation, intensity, and structure of deep convective systems (DCSs; with 20-dBZ echo tops exceeding 14 km) over the Tibetan Plateau–South Asian monsoon region from the Tibetan Plateau (TP) to the ocean are investigated using 14 yr of Tropical Rainfall Measuring Mission (TRMM) data. Four unique regions characterized by different orography are selected for comparison, including the TP, the southern Himalayan front (SHF), the South Asian subcontinent (SAS), and the ocean. DCSs and intense DCSs (IDCSs; with 40-dBZ echo tops exceeding 10 km) occur more frequently over the continent than over the ocean. About 23% of total DCSs develop into IDCSs in the SHF, followed by the TP (21%) and the SAS (15%), with the least over the ocean (2%). The average 20-dBZ echo-top height of IDCSs exceeds 16 km and 9% of them even exceed 18 km. DCSs and IDCSs are the most frequent over the SHF, especially in the westernmost SHF, where the intensity—in terms of strong radar echo-top (viz., 40 dBZ) height, ice-particle content, and lightning flash rate—is the strongest. DCSs over the TP are relatively weak in convective intensity and small in size but occur frequently. Oceanic DCSs possess the tallest cloud top (which mainly reflects small ice particles) and the largest size, but their convective intensity is markedly weaker. DCSs and IDCSs show a similar diurnal variation, mainly occurring in the afternoon with a peak at 1600 local time over land. Although most of both DCSs and IDCSs occur between April and October, DCSs have a peak in August, whereas IDCSs have a peak in May.


2014 ◽  
Vol 15 (1) ◽  
pp. 229-242 ◽  
Author(s):  
Marco Lomazzi ◽  
Dara Entekhabi ◽  
Joaquim G. Pinto ◽  
Giorgio Roth ◽  
Roberto Rudari

Abstract The summer monsoon season is an important hydrometeorological feature of the Indian subcontinent and it has significant socioeconomic impacts. This study is aimed at understanding the processes associated with the occurrence of catastrophic flood events. The study has two novel features that add to the existing body of knowledge about the South Asian monsoon: 1) it combines traditional hydrometeorological observations (rain gauge measurements) with unconventional data (media and state historical records of reported flooding) to produce value-added century-long time series of potential flood events and 2) it identifies the larger regional synoptic conditions leading to days with flood potential in the time series. The promise of mining unconventional data to extend hydrometeorological records is demonstrated in this study. The synoptic evolution of flooding events in the western-central coast of India and the densely populated Mumbai area are shown to correspond to active monsoon periods with embedded low pressure centers and have far-upstream influences from the western edge of the Indian Ocean basin. The coastal processes along the Arabian Peninsula where the currents interact with the continental shelf are found to be key features of extremes during the South Asian monsoon.


Sign in / Sign up

Export Citation Format

Share Document