Ultimate Pullout Capacity of Isolated Helical Anchor Using Finite Element Analysis

Author(s):  
P. Ghosh ◽  
S. Samal
Author(s):  
Jun Liu ◽  
Lihui Lu ◽  
Long Yu

The OMNI-Max anchor is a multi-directional, self-inserting, gravity-installed anchor and used as foundation for mooring deep water offshore facilities, including risers and floating structures. The OMNI-Max anchor offers a cost effective anchoring solution with improved reliability in the mooring system. Pullout capacity and keying behavior are two important issues in the design of the OMNI-Max anchor. In this paper, the pullout capacity and the keying process of a vertically installed OMNI-Max anchor embedded in normally consolidated clay were simulated using three dimensional large deformation finite element analysis. In these numerical analyses, 10-node tetrahedral elements were used to predict the collapse loads of undrained geotechnical problems involving material incompressibility. Nodal joint elements were used to simulate the interaction between the anchor and soil. The effect of the loading angle on the keying behavior of the OMNI-Max anchor was considered. The analyses clearly show the two important processes (1) “keying”: the anchor rotates rapidly until reaching the best bearing capacity position; (2) “diving”: the anchor mainly translates with tiny rotation. It agrees well with the keying and diving phenomenon in published model test results.


Author(s):  
Yanbing Zhao ◽  
Haixiao Liu

Previously published finite element analysis of drag anchors only involved the pullout capacity of the anchor. There are no finite element (FE) simulations of the installation of drag anchors probably because of two restrictions. First, during the anchor installation, the installation line is needed, which is difficult to be simulated in the FE analysis. Second, the anchor installation that involves large deformation of surrounding soils can not be solved using the classical FE method. In the present work, the installation line is constructed by connecting cylindrical units with each other using connector elements. Then it is introduced into the installation of drag anchors, which is simulated by a large deformation finite element analysis using the coupled Eulerian-Lagrangian (CEL) technique. By comparing with theoretical solutions, including the tension and profile of the installation line embedded in soils, and the movement direction, drag force, drag angle and trajectory of the anchor, the FE simulation of the drag anchor installation is well verified. The present study also demonstrates that the CEL technique is effective for simulating the anchor-line-soil interactional problems.


2002 ◽  
Vol 11 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Chatchai Kunavisarut ◽  
Lisa A. Lang ◽  
Brian R. Stoner ◽  
David A. Felton

2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


Sign in / Sign up

Export Citation Format

Share Document