Numerical Simulation of Drag Anchor Installation by a Large Deformation Finite Element Technique

Author(s):  
Yanbing Zhao ◽  
Haixiao Liu

Previously published finite element analysis of drag anchors only involved the pullout capacity of the anchor. There are no finite element (FE) simulations of the installation of drag anchors probably because of two restrictions. First, during the anchor installation, the installation line is needed, which is difficult to be simulated in the FE analysis. Second, the anchor installation that involves large deformation of surrounding soils can not be solved using the classical FE method. In the present work, the installation line is constructed by connecting cylindrical units with each other using connector elements. Then it is introduced into the installation of drag anchors, which is simulated by a large deformation finite element analysis using the coupled Eulerian-Lagrangian (CEL) technique. By comparing with theoretical solutions, including the tension and profile of the installation line embedded in soils, and the movement direction, drag force, drag angle and trajectory of the anchor, the FE simulation of the drag anchor installation is well verified. The present study also demonstrates that the CEL technique is effective for simulating the anchor-line-soil interactional problems.

Author(s):  
Jun Liu ◽  
Lihui Lu ◽  
Long Yu

The OMNI-Max anchor is a multi-directional, self-inserting, gravity-installed anchor and used as foundation for mooring deep water offshore facilities, including risers and floating structures. The OMNI-Max anchor offers a cost effective anchoring solution with improved reliability in the mooring system. Pullout capacity and keying behavior are two important issues in the design of the OMNI-Max anchor. In this paper, the pullout capacity and the keying process of a vertically installed OMNI-Max anchor embedded in normally consolidated clay were simulated using three dimensional large deformation finite element analysis. In these numerical analyses, 10-node tetrahedral elements were used to predict the collapse loads of undrained geotechnical problems involving material incompressibility. Nodal joint elements were used to simulate the interaction between the anchor and soil. The effect of the loading angle on the keying behavior of the OMNI-Max anchor was considered. The analyses clearly show the two important processes (1) “keying”: the anchor rotates rapidly until reaching the best bearing capacity position; (2) “diving”: the anchor mainly translates with tiny rotation. It agrees well with the keying and diving phenomenon in published model test results.


2013 ◽  
Vol 856 ◽  
pp. 147-152
Author(s):  
S.H. Adarsh ◽  
U.S. Mallikarjun

Shape Memory Alloys (SMA) are promising materials for actuation in space applications, because of the relatively large deformations and forces that they offer. However, their complex behaviour and interaction of several physical domains (electrical, thermal and mechanical), the study of SMA behaviour is a challenging field. Present work aims at correlating the Finite Element (FE) analysis of SMA with closed form solutions and experimental data. Though sufficient literature is available on closed form solution of SMA, not much detail is available on the Finite element Analysis. In the present work an attempt is made for characterization of SMA through solving the governing equations by established closed form solution, and finally correlating FE results with these data. Extensive experiments were conducted on 0.3mm diameter NiTinol SMA wire at various temperatures and stress conditions and these results were compared with FE analysis conducted using MSC.Marc. A comparison of results from finite element analysis with the experimental data exhibits fairly good agreement.


2014 ◽  
Vol 970 ◽  
pp. 177-184 ◽  
Author(s):  
Wen Chiet Cheong ◽  
Heng Keong Kam ◽  
Chan Chin Wang ◽  
Ying Pio Lim

A computational technique of rigid-plastic finite element method by using the Eulerian meshing method was developed to deal with large deformation problem in metal forming by replacing the conventional way of applying complicated remeshing schemes when using the Lagrange’s elements. During metal forming process, a workpiece normally undergoes large deformation and causes severe distortion of elements in finite element analysis. The distorted element may lead to instability in numerical calculation and divergence of non-linear solution in finite element analysis. With Eulerian elements, the initial elements are generated to fix into a specified analytical region with particles implanted as markers to form the body of a workpiece. The particles are allowed to flow between the elements after each deformation step to show the deforming pattern of material. Four types of cold forging and sheet metal clinching were conducted to investigate the effectiveness of the presented method. The proposed method is found to be effective by comparing the results on dimension of the final product, material flow behaviour and punch load versus stroke obtained from simulation and experiment.


Author(s):  
Francis H. Ku ◽  
Pete C. Riccardella

This paper presents a fast finite element analysis (FEA) model to efficiently predict the residual stresses in a feeder elbow in a CANDU nuclear reactor coolant system throughout the various stages of the manufacturing and welding processes, including elbow forming, Grayloc hub weld, and weld overlay application. The finite element (FE) method employs optimized FEA procedure along with three-dimensional (3-D) elastic-plastic technology and large deformation capability to predict the residual stresses due to the feeder forming and various welding processes. The results demonstrate that the fast FEA method captures the residual stress trends with acceptable accuracy and, hence, provides an efficient and practical tool for performing complicated parametric 3-D weld residual stress studies.


2011 ◽  
Vol 326 ◽  
pp. 1-10 ◽  
Author(s):  
Hammad Rahman ◽  
Rehan Jamshed ◽  
Haris Hameed ◽  
Sajid Raza

Finite element analysis of honeycomb sandwich panel has been performed by modeling the structure through three different approaches. Continuum properties are calculated through analytical solution and verified through FE analysis of bare core. In addition to that the thickness of core has also been varied in all the three approaches in order to study its effect on vibration analysis of sandwich structure.


Sign in / Sign up

Export Citation Format

Share Document