User Preference Information Retrieval by Using Multiplicative Adaptive Refinement Search Algorithm

Author(s):  
Nan Yu Hlaing ◽  
Myintzu Phyo Aung
Libri ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zongda Wu ◽  
Chenglang Lu ◽  
Youlin Zhao ◽  
Jian Xie ◽  
Dongdong Zou ◽  
...  

Abstract This paper reviews a large number of research achievements relevant to user privacy protection in an untrusted network environment, and then analyzes and evaluates their application limitations in personalized information retrieval, to establish the conditional constraints that an effective approach for user preference privacy protection in personalized information retrieval should meet, thus providing a basic reference for the solution of this problem. First, based on the basic framework of a personalized information retrieval platform, we establish a complete set of constraints for user preference privacy protection in terms of security, usability, efficiency, and accuracy. Then, we comprehensively review the technical features for all kinds of popular methods for user privacy protection, and analyze their application limitations in personalized information retrieval, according to the constraints of preference privacy protection. The results show that personalized information retrieval has higher requirements for users’ privacy protection, i.e., it is required to comprehensively improve the security of users’ preference privacy on the untrusted server-side, under the precondition of not changing the platform, algorithm, efficiency, and accuracy of personalized information retrieval. However, all kinds of existing privacy methods still cannot meet the above requirements. This paper is an important study attempt to the problem of user preference privacy protection of personalized information retrieval, which can provide a basic reference and direction for the further study of the problem.


Web Mining ◽  
2011 ◽  
pp. 99-118 ◽  
Author(s):  
Xiannong Meng ◽  
Zhixiang Chen

This chapter reports the project MARS (Multiplicative Adaptive Refinement Search), which applies a new multiplicative adaptive algorithm for user preference retrieval to Web searches. The new algorithm uses a multiplicative query expansion strategy to adaptively improve and reformulate the query vector to learn users’ information preference. The algorithm has provable better performance than the popular Rocchio’s similarity-based relevance feedback algorithm in learning a user preference that is determined by a linear classifier with a small number of non-zero coefficients over the real-valued vector space. A meta-search engine based on the aforementioned algorithm is built, and analysis of its search performance is presented.


2018 ◽  
Vol 22 (2) ◽  
pp. 885-905
Author(s):  
Pengfei Liu ◽  
Minyu Feng ◽  
Ming Liu

Author(s):  
Heyong Wang ◽  
◽  
Ming Hong ◽  
Jinjiong Lan

The traditional collaborative filtering model suffers from high-dimensional sparse user rating information and ignores user preference information contained in user reviews. To address the problem, this paper proposes a new collaborative filtering model UL_SAM (UBCF_LDA_SIMILAR_ADD_MEAN) which integrates topic model with user-based collaborative filtering model. UL_SAM extracts user preference information from user reviews through topic model and then fuses user preference information with user rating information by similarity fusion method to create fusion information. UL_SAM creates collaborative filtering recommendations according to fusion information. It is the advantage of UL_SAM on improving recommendation effectiveness that UL_SAM enriches information for collaborative recommendation by integrating user preference with user rating information. Experimental results of two public datasets demonstrate significant improvement on recommendation effectiveness in our model.


Sign in / Sign up

Export Citation Format

Share Document