Impact of Tri-Fuel on Compression Ignition Engine Emissions: Blends of Waste Frying Oil–Alcohol–Diesel

Author(s):  
Thokchom Subhaschandra Singh ◽  
Tikendra Nath Verma
Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2936 ◽  
Author(s):  
Hua Tian ◽  
Jingchen Cui ◽  
Tianhao Yang ◽  
Yao Fu ◽  
Jiangping Tian ◽  
...  

Low-temperature combustions (LTCs), such as homogeneous charge compression ignition (HCCI), could achieve high thermal efficiency and low engine emissions by combining the advantages of spark-ignited (SI) engines and compression-ignited (CI) engines. Robust control of the ignition timing, however, still remains a hurdle to practical use. A novel technology of jet-controlled compression ignition (JCCI) was proposed to solve the issue. JCCI combustion phasing was controlled by hot jet formed from pre-chamber spark-ignited combustion. Experiments were done on a modified high-speed marine engine for JCCI characteristics research. The JCCI principle was verified by operating the engine individually in the mode of JCCI and in the mode of no pre-chamber jet under low- and medium-load working conditions. Effects of pre-chamber spark timing and intake charge temperature on JCCI process were tested. It was proven that the combustion phasing of the JCCI engine was closely related to the pre-chamber spark timing. A 20 °C temperature change of intake charge only caused a 2° crank angle change of the start of combustion. Extremely low nitrogen oxides (NOx) emission was achieved by JCCI combustion while keeping high thermal efficiency. The JCCI could be a promising technology for dual-fuel marine engines.


2020 ◽  
Vol 1 ◽  
Author(s):  
Changmin Yu ◽  
Marko Seslija ◽  
George Brownbridge ◽  
Sebastian Mosbach ◽  
Markus Kraft ◽  
...  

Abstract We apply deep kernel learning (DKL), which can be viewed as a combination of a Gaussian process (GP) and a deep neural network (DNN), to compression ignition engine emissions and compare its performance to a selection of other surrogate models on the same dataset. Surrogate models are a class of computationally cheaper alternatives to physics-based models. High-dimensional model representation (HDMR) is also briefly discussed and acts as a benchmark model for comparison. We apply the considered methods to a dataset, which was obtained from a compression ignition engine and includes as outputs soot and NO x emissions as functions of 14 engine operating condition variables. We combine a quasi-random global search with a conventional grid-optimization method in order to identify suitable values for several DKL hyperparameters, which include network architecture, kernel, and learning parameters. The performance of DKL, HDMR, plain GPs, and plain DNNs is compared in terms of the root mean squared error (RMSE) of the predictions as well as computational expense of training and evaluation. It is shown that DKL performs best in terms of RMSE in the predictions whilst maintaining the computational cost at a reasonable level, and DKL predictions are in good agreement with the experimental emissions data.


2013 ◽  
Author(s):  
Ambarish Datta ◽  
Bijan Kumar Mandal

The enhanced use of diesel fuel and the strict emission norms for the protection of environment have necessitated finding sustainable alternative and relatively green fuels for compression ignition engines. This paper presents a brief review on the current status of biodiesel production and its performance and emission characteristics as compression ignition engine fuel. This study is based on the reports on biodiesel fuels published in the current literature by different researchers. Biodiesel can be produced from crude vegetable oil, non-edible oil, waste frying oil, animal tallow and also from algae by a chemical process called transesterification. Biodiesel is also called methyl or ethyl ester of the corresponding feed stocks from which it has been produced. Biodiesel is completely miscible with diesel oil, thus allowing the use of blends of mineral diesel and biodiesel in any percentage. Presently, biodiesel is blended with mineral diesel and used commercially as fuel in many countries. Biodiesel fueled CI engines perform more or less in the same way as that fueled with the mineral diesel. Exhaust emissions are significantly improved due the use of biodiesel or blends of biodiesel and mineral diesel. The oxides of nitrogen are found to be greater in exhaust in case of biodiesel compared to mineral diesel. But the higher viscosity of biodiesel also enhances the lubricating property. Biodiesel being an oxygenated fuel improves combustion.


Author(s):  
Adeyinka Sikiru Yusuff ◽  
Olalekan David Adeniyi ◽  
Moses Aderemi Olutoye ◽  
Uduak George Akpan

Direct use of vegetable oil as a fuel on compression ignition engine has been described as impossible, because of its high viscosity and density. Transesterification process and other methods have been identified as ways of reducing these two properties. The high cost of virgin vegetable oils and its competition for food have made the biodiesel unable to compete with fossil diesel and also hike its cost. In order to solve these menaces, in this study, waste frying oil was used as a feedstock for production of biodiesel via transesterification using anthill-eggshell promoted Ni-Co mixed oxides (NiCoAE) as heterogeneous catalyst. The composite catalyst was prepared via incipient wetness impregnation (IWI) method and thermally treated at 1000 °C for 4 h. The developed catalyst was characterized using FTIR and SEM techniques. The biodiesel produced under the favourable reaction conditions was blended with petroleum diesel in three different proportions (B20, B50 and B80) and were tested on diesel engine to evaluate their performance and emission characteristics. The blended fuel containing 20% by volume biodiesel (B20) emitted lowest percentage of CO and CO2. The result obtained herein indicates that the mixture of biodiesel and petroleum diesel containing 20% biodiesel (B20) emitted less carbon monoxide (CO) and carbon dioxide (CO2), thus, indicating best dual fuel combination, which can be used in diesel engines without any adjustment or modification in the engines. This result is in agreement with the findings reported in the literature and Energy Policy Act (EPA) of 1992.


2017 ◽  
Vol 27 (3) ◽  
pp. 154-161 ◽  
Author(s):  
Pragyan P. Patnaik ◽  
Shakti P. Jena ◽  
Saroj K. Acharya ◽  
Harish C. Das

Sign in / Sign up

Export Citation Format

Share Document