Production, Performance and Emissions of Biodiesel as Compression Ignition Engine Fuel

2013 ◽  
Author(s):  
Ambarish Datta ◽  
Bijan Kumar Mandal

The enhanced use of diesel fuel and the strict emission norms for the protection of environment have necessitated finding sustainable alternative and relatively green fuels for compression ignition engines. This paper presents a brief review on the current status of biodiesel production and its performance and emission characteristics as compression ignition engine fuel. This study is based on the reports on biodiesel fuels published in the current literature by different researchers. Biodiesel can be produced from crude vegetable oil, non-edible oil, waste frying oil, animal tallow and also from algae by a chemical process called transesterification. Biodiesel is also called methyl or ethyl ester of the corresponding feed stocks from which it has been produced. Biodiesel is completely miscible with diesel oil, thus allowing the use of blends of mineral diesel and biodiesel in any percentage. Presently, biodiesel is blended with mineral diesel and used commercially as fuel in many countries. Biodiesel fueled CI engines perform more or less in the same way as that fueled with the mineral diesel. Exhaust emissions are significantly improved due the use of biodiesel or blends of biodiesel and mineral diesel. The oxides of nitrogen are found to be greater in exhaust in case of biodiesel compared to mineral diesel. But the higher viscosity of biodiesel also enhances the lubricating property. Biodiesel being an oxygenated fuel improves combustion.

Author(s):  
V.H. Wilson ◽  
V. Yalini

Fossil fuel is getting exhausted at a fast rate and contributes to high carbon monoxide emissions. Biodiesel, being environmentally friendly, has better performance than diesel. Castor oil is an easily available vegetable oil in India. But its high viscosity leads to blockage of the fuel lines. The amount of free fatty acid more than 1% leads to soap formation which necessitates the biodiesel production in a two step process. The first step of acid catalyzed esterification process reduces the free fatty acid content of castor oil to below 1%. The second step of transesterification process converts the preheated oil to castor biodiesel. This two step process gave a maximum yield of 90%.The methyl castor oil (biodiesel) is blended with diesel in different proportions on volume basis as 15:85 (B15), 25:75 (B25), and 35:65 (B35). These blended oils are used to run a single cylinder four stroke compression ignition engine with different coatings of pistons, to study and compare the engine performance and emission characteristics at different load conditions.


Author(s):  
Andrew C. Eloka-Eboka ◽  
Freddie L. Inambao

Micro-algae are a large and diverse group of simple typically autotrophic organisms which have the potential to produce greater amounts of non-polar lipids and biomass than most terrestrial biodiesel feedstocks. Having emerged as one of the most promising sources for biodiesel production, they are gaining research interests in the current energy scenario due to their phenomenal growth potential (< 21 days log phase) in addition to relatively high lipids production which are also excellent source of biodiesel. In this study, engine performance and emission profile was performed using biodiesel fuels and blends from micro-algal technology in a compression ignition engine. The technology of micro-algae involved open pond cultivation and the use of photo-bioreactor model BF-115 Bioflo/celli Gen made in the US of 14 litre capacity (200 Lux light intensity) and flowrate of 2.5L/min. The micro-algal species used were Chlorella vulgaris and Scenedesmus spp. The biodiesel produced were blended with conventional diesel (AGO) at different proportions. The performance parameters evaluated include: engine power, torque, brake specific fuel consumption (BSFC), smoke opacity, thermal gravimetry, thermal efficiency, exhaust gas temperatures and lubricity while the varying effects of emission pollutants during combustion were also studied. Results showed that viscosity, density and lubricity have significant effects on engine output power and torque than when throttled with AGO which was used as control. Combustion efficiency and emission profile were better than the AGO due to the oxygenated nature of the micro-algal biodiesel which brought about complete combustion. A striking deduction arrived is that oxygen content of the algal biodiesel had direct influence on smoke opacity and emissions in the engine and also thermo-gravimetrically stable for other thermal applications. The engine tests (BSFC, BTE, ThE, MechE, EGT) and overall emissions (CO2, CO, VOCs, HC, SOx, NOx) were within acceptable limits and comparable with AGO. The implication of the study is that Micro-algal technology is feasible and can revolutionise development in biodiesel industry.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Paramvir Singh ◽  
S. R. Chauhan ◽  
Varun Goel ◽  
Ashwani K. Gupta

The results obtained on wear assessment from a compression ignition (CI) engine fueled with a blend of 70% amla seed biodiesel (AB) and 30% eucalyptus oil (EU) on volume basis (called AB70EU30). The results showed stable engine operation and good operability of the engine-fuel system with the binary biodiesel fuel blend. The feasibility of this blend over a long-term endurance tests was explored. The specific assessment examination included the fate of cylinder head, pump plunger, injector nozzle, and piston crown, which affects the engine performance and engine life. The experimental results revealed better tribological performance characteristics with the binary fuel blend as compared to contemporary diesel fuel. No specific problem was encountered during the long-term endurance tests with the binary fuel blend using the modified engine parameters. The results show that the binary fuel mixture offers good potential for use as diesel fuel in CI engines while maintaining good performance and endurance.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 265
Author(s):  
Ameer Suhel ◽  
Norwazan Abdul Rahim ◽  
Mohd Rosdzimin Abdul Rahman ◽  
Khairol Amali Bin Ahmad ◽  
Yew Heng Teoh ◽  
...  

In recent years, industries have been investing to develop a potential alternative fuel to substitute the depleting fossil fuels which emit noxious emissions. Present work investigated the effect of ferrous ferric oxide nano-additive on performance and emission parameters of compression ignition engine fuelled with chicken fat methyl ester blends. The nano-additive was included with various methyl ester blends at different ppm of 50, 100, and 150 through the ultrasonication process. Probe sonicator was utilized for nano-fuel preparation to inhibit the formation of agglomeration of nanoparticles in base fuel. Experimental results revealed that the addition of 100 ppm dosage of ferrous ferric oxide nanoparticles in blends significantly improves the combustion performance and substantially decrease the pernicious emissions of the engine. It is also found from an experimental results analysis that brake thermal efficiency (BTE) improved by 4.84%, a reduction in brake specific fuel consumption (BSFC) by 10.44%, brake specific energy consumption (BSEC) by 9.44%, exhaust gas temperature (EGT) by 19.47%, carbon monoxides (CO) by 53.22%, unburned hydrocarbon (UHC) by 21.73%, nitrogen oxides (NOx) by 15.39%, and smoke by 14.73% for the nano-fuel B20FFO100 blend. By seeing of analysis, it is concluded that the doping of ferrous ferric oxide nano-additive in chicken fat methyl ester blends shows an overall development in engine characteristics.


2021 ◽  
pp. 146808742110183
Author(s):  
Jonathan Martin ◽  
André Boehman

Compression-ignition (CI) engines can produce higher thermal efficiency (TE) and thus lower carbon dioxide (CO2) emissions than spark-ignition (SI) engines. Unfortunately, the overall fuel economy of CI engine vehicles is limited by their emissions of nitrogen oxides (NOx) and soot, which must be mitigated with costly, resource- and energy-intensive aftertreatment. NOx and soot could also be mitigated by adding premixed gasoline to complement the conventional, non-premixed direct injection (DI) of diesel fuel in CI engines. Several such “dual-fuel” combustion modes have been introduced in recent years, but these modes are usually studied individually at discrete conditions. This paper introduces a mapping system for dual-fuel CI modes that links together several previously studied modes across a continuous two-dimensional diagram. This system includes the conventional diesel combustion (CDC) and conventional dual-fuel (CDF) modes; the well-explored advanced combustion modes of HCCI, RCCI, PCCI, and PPCI; and a previously discovered but relatively unexplored combustion mode that is herein titled “Piston-split Dual-Fuel Combustion” or PDFC. Tests show that dual-fuel CI engines can simultaneously increase TE and lower NOx and/or soot emissions at high loads through the use of Partial HCCI (PHCCI). At low loads, PHCCI is not possible, but either PDFC or RCCI can be used to further improve NOx and/or soot emissions, albeit at slightly lower TE. These results lead to a “partial dual-fuel” multi-mode strategy of PHCCI at high loads and CDC at low loads, linked together by PDFC. Drive cycle simulations show that this strategy, when tuned to balance NOx and soot reductions, can reduce engine-out CO2 emissions by about 1% while reducing NOx and soot by about 20% each with respect to CDC. This increases emissions of unburnt hydrocarbons (UHC), still in a treatable range (2.0 g/kWh) but five times as high as CDC, requiring changes in aftertreatment strategy.


2021 ◽  
Vol 1126 (1) ◽  
pp. 012074
Author(s):  
Nitin Dattatreya Kamitkar ◽  
Satishkumar ◽  
A N Basavaraju ◽  
Shashikant Kushnoore ◽  
A B Deepa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document