Machining Performance Optimization During Electro Discharge Machining on Titanium (Grade 4): Application of Satisfaction Function and Distance-Based Approach

Author(s):  
Dipraj Banik ◽  
Rahul ◽  
Gitimaya Kar ◽  
Biswajit Debnath ◽  
B. C. Routara ◽  
...  
Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 617
Author(s):  
Jing Li ◽  
Wanwan Chen ◽  
Yongwei Zhu

Ultrasonic vibration-composited electrolysis/electro-discharge machining technology (UE/DM) is effective for machining particulate-reinforced metal matrix composites (MMCs). However, the vibration of the tool or workpiece suitable for holes limits the application of UE/DM. To improve the generating machining efficiency and quality of flat and curved surfaces, in this study, we implemented two-dimensional ultrasonic vibration into UE/DM and constructed a novel method named two-dimensional ultrasonic vibration-composited electrolysis/electro-discharge machining (2UE/DM). The influence of vibration on the performance of 2UE/DM compared to other process technologies was studied, and an orthogonal experiment was designed to optimize the parameters. The results indicated that the materiel remove rate (MRR) mainly increased via voltage and tool vibration. The change current was responsible for the MRR in the process. Spindle speed and workpiece vibration were not dominant factors affecting the MRR; the spindle speed and tool and workpiece vibration, which reduced the height difference between a ridge and crater caused by abrasive grinding, were responsible for surface roughness (Ra) and form precision (δ). Additionally, the optimized parameters of 1000 rpm, 3 V, and 5 um were conducted on MMCs of 40 SiCp/Al and achieved the maximum MRR and minimum Ra and δ of 0.76 mm3/min, 3.35 um, and 5.84%, respectively. This study’s findings provide valuable process parameters for improving machining efficiency and quality for MMCs of 2UE/DM.


Author(s):  
B.V. Manoj Kumar ◽  
J. Ramkumar ◽  
Bikramjit Basu ◽  
S. Kang

2011 ◽  
Vol 121-126 ◽  
pp. 564-567
Author(s):  
Bao Ji Ma ◽  
Yu Quan Zhu ◽  
Xiao Li Jin

The machining characteristics of SiC/Al composite using wire electro discharge machining (WEDM) were investigated in this study. Material cutting speed and surface roughness value were adopted to evaluate the machinability. Peak current, pulse on time, pulse duration and working voltage were selected as the input variables to investigate the machining performance. Effects of input variables on the cutting speed and surface roughness were experimentally tested. Peak current, pulse on time and working voltage were confirmed to have positive effects on cutting speed and surface roughness value. Whereas the cutting speed and surface roughness value decrease with the increase of pulse duration.


Sign in / Sign up

Export Citation Format

Share Document