scholarly journals Study on Generating Machining Performance of Two-Dimensional Ultrasonic Vibration-Composited Electrolysis/Electro-Discharge Technology for MMCs

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 617
Author(s):  
Jing Li ◽  
Wanwan Chen ◽  
Yongwei Zhu

Ultrasonic vibration-composited electrolysis/electro-discharge machining technology (UE/DM) is effective for machining particulate-reinforced metal matrix composites (MMCs). However, the vibration of the tool or workpiece suitable for holes limits the application of UE/DM. To improve the generating machining efficiency and quality of flat and curved surfaces, in this study, we implemented two-dimensional ultrasonic vibration into UE/DM and constructed a novel method named two-dimensional ultrasonic vibration-composited electrolysis/electro-discharge machining (2UE/DM). The influence of vibration on the performance of 2UE/DM compared to other process technologies was studied, and an orthogonal experiment was designed to optimize the parameters. The results indicated that the materiel remove rate (MRR) mainly increased via voltage and tool vibration. The change current was responsible for the MRR in the process. Spindle speed and workpiece vibration were not dominant factors affecting the MRR; the spindle speed and tool and workpiece vibration, which reduced the height difference between a ridge and crater caused by abrasive grinding, were responsible for surface roughness (Ra) and form precision (δ). Additionally, the optimized parameters of 1000 rpm, 3 V, and 5 um were conducted on MMCs of 40 SiCp/Al and achieved the maximum MRR and minimum Ra and δ of 0.76 mm3/min, 3.35 um, and 5.84%, respectively. This study’s findings provide valuable process parameters for improving machining efficiency and quality for MMCs of 2UE/DM.

2020 ◽  
pp. 341-350
Author(s):  
Di Wang ◽  
Changbin He ◽  
Haiqing Tian ◽  
Liu Fei ◽  
Zhang Tao ◽  
...  

Low productivity and high electricity consumption are considered problems of the hammer mill, which is widely used in current feed production. In this paper, the mechanical properties of corn grain ground by a hammer mill were analysed, and the key factors affecting the performance of the hammer mill were determined. The single-factor experiment and three-factor, three-level quadratic regression orthogonal experiment were carried out with the spindle speed, corn grain moisture content and number of hammers as experimental factors and the productivity and electricity consumption per ton as evaluation indexes. The results showed that the order of influence on the productivity was spindle speed > corn grain moisture content > number of hammers and that the order of influence on the electricity consumption per ton was corn grain moisture content > spindle speed > number of hammers. The parameters were optimized based on the response surface method with the following results: the spindle speed was 4306 r/min, the corn grain moisture content was 10%, and the number of hammers was 24. The validation experiment was carried out with the optimal parameters’ combination. The productivity and electricity consumption per ton were 988.12 kg/h and 5.37 kW·h/t, respectively, which were consistent with the predicted results of the model.


2011 ◽  
Vol 291-294 ◽  
pp. 1725-1728 ◽  
Author(s):  
Guo Fu Gao ◽  
Yan Yan Zhao ◽  
Dao Hui Xiang ◽  
Bo Zhao

Although particle reinforced metal matrix composites possess excellent physical properties, its machining performance is rather bad because of its specific structure. It is difficult to obtain good cutting effect by traditional machining method. So machining has become the bottleneck which strictly restricts its industry application. This paper mainly focuses on both wear characteristics of different tool materials and material removal mechanism in ultrasonic milling high volume fraction particle reinforced metal matrix composites SiCp/Al. An acoustic device for ultrasonic vibration milling was developed to introduce the ultrasonic vibration into the traditional machining process. Through the contrast experiment of traditional milling and ultrasonic vibration milling SiCp/Al, the mechanism of tool wear and characteristics of surface topography were analyzed. The experimental results showed that the surface integrity and tool life in the ultrasonic vibration milling SiCp/Al were improved. This template explains and demonstrates how to prepare your camera-ready paper for Trans Tech Publications. The best is to read these instructions and follow the outline of this text.


Author(s):  
Jipeng Chen ◽  
Lin Gu ◽  
Yingmou Zhu ◽  
Wansheng Zhao

Blasting erosion arc machining (BEAM) is adopted to improve the machining efficiency of high fraction (50 vol.%) SiC/Al matrix composites. Results of the fractional factorial experiments and full factorial experiments indicate that the electrical parameters (peak current, pulse duration and pulse interval) are the main impact factors of the machining efficiency, and when the peak current is 500 A, the pulse duration is 8 ms and the pulse interval is 2 ms, the material removal rate reaches to 6000 [Formula: see text]/min. Furthermore, the material removal rate was optimized and could be as high as 7500 [Formula: see text]/min with the tool wear ratio about 10%. Simulation of the single discharge heat transfer illustrates that the SiC particles have negative influence on the machining performance due to their temperature dependent characteristics. The polarity effect was also studied and it is disclosed that different machining polarities have different influences on the machining performance, surface integrity and even the formation of SiC particles. Finally, a 50 vol.% SiC/Al workpiece was machined with blasting erosion arc machining.


2010 ◽  
Vol 42 ◽  
pp. 204-208 ◽  
Author(s):  
Xiang Dong Li ◽  
Quan Cai Wang

In this paper, the characteristic of grinding force in two-dimensional ultrasonic vibration assisted grinding nano-ceramic was studied by experiment based on indentation fracture mechanics, and mathematical model of grinding force was established. The study shows that grinding force mainly result from the impact of the grains on the workpiece in ultrasonic grinding, and the pulse power is much larger than normal grinding force. The ultrasonic vibration frequency is so high and the contact time of grains with the workpiece is so short that the pulse force will be balanced by reaction force from workpiece. In grinding workpiece was loaded by the periodical stress field, which accelerates the fatigue fracture.


2010 ◽  
Vol 455 ◽  
pp. 302-306 ◽  
Author(s):  
Xing Xin Xu ◽  
Xiao Hui Zhang ◽  
Chuan Shao Liu ◽  
Bo Zhao

With the rapid development of aviation at home, particle reinforced metal matrix composites (PRMMCs) has been widely applied recently. But at the same time, the difficult machining has gradually been one of the most outstanding bottle-necks that restrict the rapid enhancement of productivity. Here, in virtue of the self-developed ultrasonic drilling equipment, hole-making experiments of common and ultrasonic vibration drilling are performed on SiC particle reinforced aluminum-matrix composites (SiCp/Al)with different content of SiC by using two types of tungsten carbide drill. Drilling characteristics of machining composites with ultrasonic vibration are analyzed from such respects as the composites crush, drilling force, drill wear and hole surface quality. Studies show that, during the ultrasonic vibration drilling process, SiC particle in the composites is prone to break along the crystal connection boundary or suffer ductile fracture under the dynamic ultrasonic impulse, in which the cutting resistance could be reduced and the tool edge could be protected. Thereby, drilling locating precision and hole surface quality could be enhanced, wear of the drill chisel edge effectively improved, and the drilling torque reduced about 30%.


Sign in / Sign up

Export Citation Format

Share Document