Experimental Investigation of Active Flux Coatings on AA-6082 Using A-TIG Welding Process

Author(s):  
M. Pradeep Kumar ◽  
V. Krishna Kanth ◽  
A. Ramki ◽  
K. E. Jagadish
Author(s):  
VIKESH VIKESH ◽  
PROF. JAGJIT RANDHAWA ◽  
DR, N. M. SURI

TIG welding is mostly used to weldthin sections for high surface finish. A major drawback in the processis having very small penetration as compare to other arc welding process. The problem can be avoided by using active flux in conventional TIG welding. In the present study investigate theoptimization of A-TIG welding process on mild steel for an optimal parameter by using Taguchi technique. Theeffect of various process parameters (welding current (I), welding speed (V), active flux) .IN the present study efforts were made to increase the weld penetration by appling the active flux and to optimize the process parameters.


2004 ◽  
Vol 120 ◽  
pp. 697-704
Author(s):  
L. Depradeux ◽  
J.-F. Jullien

In this study, a parallel experimental and numerical simulation of phenomena that take place in the Heat Affected Zone during TIG welding on 316L stainless steel is presented. The aim of this study is to predict by numerical simulation residual stresses and distortions generated by the welding process. For the experiment, a very simple geometry with reduced dimensions is considered: the specimens are disks, made of 316L. The discs are heated in the central zone in order to reproduce thermo-mechanical cycles that take place in the HAZ during a TIG welding process. During and after thermal cycle, a large quantity of measurement is provided, and allows to compare the results of different numerical models used in the simulations. The comparative thermal and mechanical analysis allows to assess the general ability of the numerical models to describe the structural behavior. The importance of the heat input rate and material characteristics is also investigated.


2021 ◽  
Vol 11 (2) ◽  
pp. 20200168
Author(s):  
Arunsinh B. Zala ◽  
N. I. Jamnapara ◽  
Vishvesh J. Badheka ◽  
C. S. Sasmal ◽  
Shiju Sam ◽  
...  

2009 ◽  
pp. 185-200
Author(s):  
J. P. Ganjigatti ◽  
Dilip Kumar Pratihar

In this chapter, an attempt has been made to design suitable knowledge bases (KBs) for carrying out forward and reverse mappings of a Tungsten inert gas (TIG) welding process. In forward mapping, the outputs (also known as the responses) are expressed as the functions of the input variables (also called the factors), whereas in reverse mapping, the factors are represented as the functions of the responses. Both the forward as well as reverse mappings are required to conduct, for an effective online control of a process. Conventional statistical regression analysis is able to carry out the forward mapping efficiently but it may not be always able to solve the problem of reverse mapping. It is a novel attempt to conduct the forward and reverse mappings of a TIG welding process using fuzzy logic (FL)-based approaches and these are found to solve the said problem efficiently.


Author(s):  
Akash Deep ◽  
Vivek Singh ◽  
Som Ashutosh ◽  
M. Chandrasekaran ◽  
Dixit Patel

Abstract Austenitic stainless steel (ASS) is widely fabricated by tungsten inert gas (TIG) welding for aesthetic look and superior mechanical properties while compared to other arc welding process. Hitherto, the limitation of this process is low depth of penetration and less productivity. To overcome this problem activated tungsten inert gas (A-TIG) welding process is employed as an alternative. In this investigation the welding performance of conventional TIG welding is compared with A-TIG process using TiO2 and SiO2 flux with respect to weld bead geometry. The experimental investigation on A-TIG welding of ASS-201 grade shows TiO2 flux helps in achieve higher penetration as compared to SiO2 flux. While welding with SiO2 the hardness in HAZ and weld region higher than that of TIG welding process.


Author(s):  
P Vasantharaja ◽  
M Vasudevan

In the present work, the optimization of Activated TIG (A-TIG) welding process parameters to achieve the desired weld bead shape parameters such as depth of penetration, bead width, and heat-affected zone (HAZ) width have been carried out using response surface methodology (RSM). The main problem faced in fabrication of weld joints is the selection of optimum combination of input variables for achieving required quality of welds. This problem can be solved by development of mathematical model and execution of experiments by RSM. Central composite design of RSM has been used to generate the design matrix for generating data on the influence of A-TIG welding process parameters. The input variables considered were welding current, torch speed, electrode tip angle, and arc gap. The response variables considered were depth of penetration, bead width and HAZ width. A second-order response surface model is developed for predicting the response for the set of given input process parameters. Then, numerical and graphical optimization is performed using RSM to obtain the desired depth of penetration, bead width, and target HAZ width using desirability approach.


Author(s):  
Sushant S. Satputaley ◽  
Yash Waware ◽  
Karan Ksheersagar ◽  
Yash Jichkar ◽  
Kaustubh Khonde

Sign in / Sign up

Export Citation Format

Share Document