Fuzzy Logic-Based Range-Free Localization for Wireless Sensor Networks in Agriculture

Author(s):  
Arindam Giri ◽  
Subrata Dutta ◽  
Sarmistha Neogy
Author(s):  
Rekha Goyat ◽  
Mritunjay Kumar Rai ◽  
Gulshan Kumar ◽  
Hye-Jin Kim ◽  
Se-Jung Lim

Background: Wireless Sensor Networks (WSNs) is considered one of the key research area in the recent. Various applications of WSNs need geographic location of the sensor nodes. Objective: Localization in WSNs plays an important role because without knowledge of sensor nodes location the information is useless. Finding the accurate location is very crucial in Wireless Sensor Networks. The efficiency of any localization approach is decided on the basis of accuracy and localization error. In range-free localization approaches, the location of unknown nodes are computed by collecting the information such as minimum hop count, hop size information from neighbors nodes. Methods: Although various studied have been done for computing the location of nodes but still, it is an enduring research area. To mitigate the problems of existing algorithms, a range-free Improved Weighted Novel DV-Hop localization algorithm is proposed. Main motive of the proposed study is to reduced localization error with least energy consumption. Firstly, the location information of anchor nodes is broadcasted upto M hop to decrease the energy consumption. Further, a weight factor and correction factor are introduced which refine the hop size of anchor nodes. Results: The refined hop size is further utilized for localization to reduces localization error significantly. The simulation results of the proposed algorithm are compared with other existing algorithms for evaluating the effectiveness and the performance. The simulated results are evaluated in terms localization error and computational cost by considering different parameters such as node density, percentage of anchor nodes, transmission range, effect of sensing field and effect of M on localization error. Further statistical analysis is performed on simulated results to prove the validation of proposed algorithm. A paired T-test is applied on localization error and localization time. The results of T-test depicts that the proposed algorithm significantly improves the localization accuracy with least energy consumption as compared to other existing algorithms like DV-Hop, IWCDV-Hop, and IDV-Hop. Conclusion: From the simulated results, it is concluded that the proposed algorithm offers 36% accurate localization than traditional DV-Hop and 21 % than IDV-Hop and 13% than IWCDV-Hop.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 196 ◽  
Author(s):  
Xing Hu ◽  
Linhua Ma ◽  
Yongqiang Ding ◽  
Jin Xu ◽  
Yan Li ◽  
...  

The geographic routing protocol only requires the location information of local nodes for routing decisions, and is considered very efficient in multi-hop wireless sensor networks. However, in dynamic wireless sensor networks, it increases the routing overhead while obtaining the location information of destination nodes by using a location server algorithm. In addition, the routing void problem and location inaccuracy problem also occur in geographic routing. To solve these problems, a novel fuzzy logic-based geographic routing protocol (FLGR) is proposed. The selection criteria and parameters for the assessment of the next forwarding node are also proposed. In FLGR protocol, the next forward node can be selected based on the fuzzy location region of the destination node. Finally, the feasibility of the FLGR forwarding mode is verified and the performance of FLGR protocol is analyzed via simulation. Simulation results show that the proposed FLGR forwarding mode can effectively avoid the routing void problem. Compared with existing protocols, the FLGR protocol has lower routing overhead, and a higher packet delivery rate in a sparse network.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Phet Aimtongkham ◽  
Tri Gia Nguyen ◽  
Chakchai So-In

Network congestion is a key challenge in resource-constrained networks, particularly those with limited bandwidth to accommodate high-volume data transmission, which causes unfavorable quality of service, including effects such as packet loss and low throughput. This challenge is crucial in wireless sensor networks (WSNs) with restrictions and constraints, including limited computing power, memory, and transmission due to self-contained batteries, which limit sensor node lifetime. Determining a path to avoid congested routes can prolong the network. Thus, we present a path determination architecture for WSNs that takes congestion into account. The architecture is divided into 3 stages, excluding the final criteria for path determination: (1) initial path construction in a top-down hierarchical structure, (2) path derivation with energy-aware assisted routing, and (3) congestion prediction using exponential smoothing. With several factors, such as hop count, remaining energy, buffer occupancy, and forwarding rate, we apply fuzzy logic systems to determine proper weights among those factors in addition to optimizing the weight over the membership functions using a bat algorithm. The simulation results indicate the superior performance of the proposed method in terms of high throughput, low packet loss, balancing the overall energy consumption, and prolonging the network lifetime compared to state-of-the-art protocols.


Sign in / Sign up

Export Citation Format

Share Document